The development of highly efficient electrocatalysts has attracted increasing attention in the field of electrochemical energy conversion. Therefore, we report a simple self-template method to construct Co-Sn-X (X = S, Se, Te) nanocages through the anion exchange reaction of CoSn(OH)6 nanocubes with chalcogenide ions under mild solvothermal conditions. Benefiting from advantageous compositional features and well-designed architectures, the obtained Co-Sn-X (X = S, Se, Te) nanocages display enhanced electrocatalytic activity for dye-sensitized solar cells (DSSCs) and the oxygen evolution reaction (OER) in an alkaline electrolyte. Remarkably, the Co-Sn-Se nanocages as the counter electrode (CE) catalyst deliver a prominent power conversion efficiency (PCE) of 9.25% for DSSCs compared with Pt CE (8.19%). Furthermore, when used as an OER catalyst, the Co-Sn-Se nanocages also exhibit outstanding electrocatalytic activity in terms of their low overpotential of 304 mV at the current density of 10 mA cm-2 and long-term stability in 1.0 M KOH solution. This work provides wide prospects for the rational design and synthesis of high-performance transition metal chalcogenide-based electrocatalysts for future energy conversion systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr07719cDOI Listing

Publication Analysis

Top Keywords

co-sn-x nanocages
12
oxygen evolution
8
anion exchange
8
exchange reaction
8
energy conversion
8
electrocatalytic activity
8
co-sn-se nanocages
8
nanocages
5
construction uniform
4
uniform co-sn-x
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!