The production of doubled haploid (DH) barley plants through anther culture is a very useful yet simple in vitro technique. DH plants derive from divisions of haploid microspores that have undergone a developmental switch under the appropriate conditions. The successive divisions lead to the formation of an embryo or callus rather than the formation of mature pollen grains. Plants that regenerate from these embryos are often either haploid, in which case their chromosome set can be doubled by treatment with colchicine, or spontaneous double haploids. The efficiency of DH plant production is highly variable depending on the genotype of the source material. Despite this limitation, DH plants have been widely used in breeding and research programs. Compared to conventional approaches, breeding strategies that makes use of DH plants achieve a homozygous state, allowing transgene or mutation stabilization in the genome, within a considerably shorter time, thus accelerating workflow or reducing work volume.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-8944-7_4 | DOI Listing |
Plant Methods
January 2025
Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, Collage of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
Background: The rapid production of doubled haploids by anther culture technology is an important breeding method for awnless triticale. The aim of this study was to explore the effects of triticale genotype and the types and ratios of exogenous hormones in the medium on the efficiency of triticale anther culture.
Results: Anthers of five triticale genotypes were cultured on four different callus induction media and the calli were induced to differentiate into green plants by culture on three different differentiation media.
Biol Methods Protoc
December 2024
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), Selektsionnaya St, 14, VNIISSOK, Odintsovo Reg., 143072 Moscow, Russia.
In this protocol for obtaining doubled haploids plants (DH), we propose a new method for microspore isolation. This method is useful for genotypes of the Brassicaceae family with low responsiveness to DH technology. For such crops, it allows increasing the embryo yield several times and sometimes obtaining embryos for the first time.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
saponins (PNS), the primary active components of (Burk.) F.H.
View Article and Find Full Text PDFMedicine (Baltimore)
October 2024
Pediatric Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.
A collection of chronic central motor, postural, and activity restriction symptoms are referred to as cerebral palsy (CP). Previous research suggests that a number of perinatal variables, including hypoxia, may be linked to CP. And the pathophysiological process that causes brain injury in growing fetuses is mostly caused by amniotic fluid infection and intra-amniotic inflammation.
View Article and Find Full Text PDFPlants (Basel)
October 2024
Department of Herbal Crop Research, NIHHS, RDA, Eumseong 27709, Republic of Korea.
Anther and microspore cultures are efficient methods for inducing haploids in plants. The microspore culture by chromosome-doubling method can produce double haploid lines, developing pure lines within the first or second generations. This study aimed to induce haploid plants in using the shed-microspore culture method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!