Reducing or eliminating code blues that occur on the inpatient, noncritical care units of children's hospitals is a challenging yet achievable goal. The mechanism to accomplish this involves several levels of effort. The implementation of effective pediatric rapid response teams is a well identified part of the process. Rapid response teams can allow for appropriate clinical interventions for deteriorating patients and may ultimately result in a reduction in hospital-wide mortality as well as efficient transfer to the pediatric intensive care unit (PICU) when necessary. The timely deployment of rapid response teams is dependent upon the appropriate recognition of patients at risk for deterioration. This recognition can be optimized by relying on assessments as simple as utilization of parental intuition to those as complex as big data models which utilize multiple predictor variables extracted from the electronic medical record. Ultimately, the goal to proactively identify patients at risk of deterioration may allow for prevention of clinical decline via appropriate and timely interventions, and if unsuccessful at that level, may allow for improved outcomes via optimized resuscitation care in the PICU.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212387 | PMC |
http://dx.doi.org/10.21037/tp.2018.09.12 | DOI Listing |
Environ Sci Technol
January 2025
Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.
This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Molecular Ecology and Evolution Group, School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom.
Phenotypic plasticity may pave the way for rapid adaptation to newly encountered environments. Although it is often contested, there is growing evidence that initial plastic responses of ancestral populations to new environmental cues may promote subsequent adaptation. However, we do not know whether plasticity to cues present in the ancestral habitat (past-cue plasticity) can facilitate adaptation to novel cues.
View Article and Find Full Text PDFScience
January 2025
Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
Human-driven Arctic warming and resulting sea ice loss have been associated with declines in several polar bear populations. However, quantifying how individual responses to environmental change integrate and scale to influence population dynamics in polar bears has yet to be achieved. We developed an individual-based bioenergetic model and hindcast population dynamics across 42 years of observed sea ice conditions in Western Hudson Bay, a region undergoing rapid environmental change.
View Article and Find Full Text PDFAnal Chem
January 2025
Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States.
Non-targeted analysis (NTA) using high-resolution mass spectrometry without defined chemical targets has the potential to expand and improve chemical monitoring in many fields. Despite rapid advancements within the research community, NTA methods and data remain underutilized by many potential beneficiaries. To better understand barriers toward widespread adoption, the Best Practices for Non-Targeted Analysis (BP4NTA) working group conducted focus group meetings and follow-up surveys with scientists (n = 61) from various sectors (e.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China.
Host-guest supramolecular fluorescence probes have garnered significant attention in the detection and sensing of bioactive molecules due to their functionalization potential, adjustable physical properties, and high specificity. However, such probes that reliably, rapidly, and specifically measure neurotransmitter dynamics at the cellular and in vivo level have yet to be reported. Herein, we present a supramolecular fluorescent chemosensor designed for norepinephrine (NE) detection, showing an exceptional response and specificity through host-guest complexation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!