Phytolith-occluded carbon (PhytOC), a highly stable carbon (C) fraction resistant to decomposition, plays an important role in long-term global C sequestration. Previous studies have demonstrated that bamboo plants contribute greatly to PhytOC sink in forests based on their aboveground biomass. However, little is known about the contribution of belowground parts of bamboo to the PhytOC stock. Here, we reported the phytolith and PhytOC accumulation in belowground trunk and rhizome of eight monopodial bamboo species that widely distributed across China. The results showed that the belowground parts made up an average of 39.41% of the total plant biomass of the eight bamboo species. There were significant ( < 0.05) variations in the phytolith and PhytOC concentrations in the belowground trunk and rhizome between the bamboo species. The mean concentrations of PhytOC in dry biomass ranged from 0.34 to 0.83 g kg in the belowground rhizome and from 0.10 to 0.94 g kg in the belowground trunk across the eight bamboo species, respectively. The mean PhytOC stocks in belowground biomass ranged from 2.57 to 23.71 kg ha, occupying an average of 23.36% of the total plant PhytOC stocks. This implies that 1.01 × 10 t PhytOC was overlooked based on the distribution of monopodial bamboos across China. Therefore, our results suggest that the belowground biomass of bamboo represents an important PhytOC stock, and should be taken into account in future studies in order to better quantifying PhytOC sequestration capacity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232502PMC
http://dx.doi.org/10.3389/fpls.2018.01615DOI Listing

Publication Analysis

Top Keywords

bamboo species
16
belowground trunk
12
phytoc
11
belowground
9
phytolith-occluded carbon
8
bamboo
8
monopodial bamboo
8
belowground parts
8
phytoc stock
8
phytolith phytoc
8

Similar Publications

Analysis of the CHS Gene Family Reveals Its Functional Responses to Hormones, Salinity, and Drought Stress in Moso Bamboo ().

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in , which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 genes in and classified them into seven subgroups, showing a closer evolutionary relationship to genes from rice.

View Article and Find Full Text PDF

Phyllostachys makinoi, an endemic bamboo species in Taiwan, is underutilized, despite its rich forest resources. Known for its antioxidant, anti-inflammatory, and antibacterial properties, this study explores the antimicrobial, anti-inflammatory, and wound-healing activities of P. makinoi extracts.

View Article and Find Full Text PDF

Revolutionary bamboo crash barriers utilizing sustainable materials for enhanced road safety.

Sci Rep

January 2025

Department of Mechanical Engineering, Government Engineering College, Barton Hill, Thiruvananthapuram, Kerala, India.

Road accidents are a growing concern worldwide, and crash barriers have significantly reduced the severity of these incidents. In its pursuit of developing an eco-friendly crash barrier, India installed the world's first 200 m bamboo crash barrier, on Bombay-Pune Highway. Although its eco-friendly and recyclable design is commendable, using Bambusa balcooa infused with creosote oil and covered with High-density polyethylene (HDPE) raises substantial health and environmental issues due to the presence of toxic and carcinogenic Polycyclic aromatic hydrocarbons (PAHs).

View Article and Find Full Text PDF

The natural population of have not been genetically enumerated due to a lack of genome sequence information or robust species-specific molecular marker. The present study was conducted to develop and validate genome-wide de novo simple sequence repeat (SSRs) markers in through shallow-pass genome sequencing. The genome sequence data of about 13 Gb was generated using Illumina technology, and high-quality sequence reads were de novo assembled into 1,390,995 contigs with GC content 42.

View Article and Find Full Text PDF

Background: Non-structural carbohydrates (NSCs) are key substances for metabolic processes in plants, providing energy for growth, development, and responses to environmental stress. Pruning mother bamboo in a clump can significantly affect the NSCs allocation of new shoots, thereby affecting their growth. Moso bamboo (Phyllostachys edulis) is an important economic bamboo species with a highest planting area in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!