The microbial communities of lake sediments play key roles in carbon cycling, linking lakes to their surrounding landscapes and to the global climate system as incubators of terrestrial organic matter and emitters of greenhouse gasses, respectively. Here, we amended lake sediments with three different plant leaf litters: a coniferous forest mix, deciduous forest mix, cattails () and then examined the bacterial, fungal and methanogen community profiles and abundances. Polyphenols were found to correlate with changes in the bacterial, methanogen, and fungal communities; most notably dominance of fungi over bacteria as polyphenol levels increased with higher abundance of the white rot fungi spp. Additionally, we saw a shift in the dominant orders of fermentative bacteria with increasing polyphenol levels, and differences in the dominant methanogen groups, with high CH production being more strongly associated with generalist groups of methanogens found at lower polyphenol levels. Our present study provides insights into and basis for future study on how shifting upland and wetland plant communities may influence anaerobic microbial communities and processes in lake sediments, and may alter the fate of terrestrial carbon entering inland waters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232422PMC
http://dx.doi.org/10.3389/fmicb.2018.02662DOI Listing

Publication Analysis

Top Keywords

lake sediments
16
microbial communities
12
polyphenol levels
12
amended lake
8
forest mix
8
communities
5
plant litter
4
litter type
4
type dictates
4
dictates microbial
4

Similar Publications

We examined the potential of environmental DNA (eDNA) for identifying tsunami deposits in the geological record using lake-bottom sediments in the Tohoku region, Japan. The presence of eDNA from marine organisms in a lacustrine event deposit provides very strong evidence that the deposit was formed by an influx of water from the ocean. The diverse DNA assemblage in the deposit formed by the 2011 Tohoku-oki tsunami included DNA of marine origin indicating that eDNA has potential as an identifying proxy for tsunami deposits.

View Article and Find Full Text PDF

High Arctic lakes reveal accelerating ecological shifts linked to twenty-first century warming.

Sci Rep

January 2025

Department of Geography, Centre for Northern Studies (CEN), & Takuvik International Research Laboratory, Université Laval, Québec, QC, Canada.

The Arctic is among the most rapidly warming regions on Earth, and climate change has triggered widespread alterations to its cryosphere and ecosystems. Among these, high Arctic lakes are highly sensitive to rising temperatures due to the influence of ice cover on multiple limnological processes. Here, we studied the sediments of three lakes on northern Ellesmere Island (82.

View Article and Find Full Text PDF

Hydrological dynamics of the Yangtze river-Dongting lake system after the construction of the three Gorges dam.

Sci Rep

January 2025

School of Ocean Engineering and Technology/Institute of Estuarine and Coastal Research, Sun Yat-sen University, Guangzhou, 510275, China.

The Yangtze River-Dongting Lake link has gotten a lot of attention as a because of the Three Gorges Project. However, the hydrological dynamic process and future direction of the river-lake interaction in the context of sediment reduction are yet unknown. Based on Dongting Lake Basin runoff and sediment data from 1961 to 2020, as well as field monitoring data of turbidity and flow velocity from Yichang to Chenglingji section of the Yangtze River, this paper examines the runoff and sediment variation law and hydrological dynamic process of Chenglingji, the only outlet connecting Dongting Lake to the Yangtze River, and reveals the development trend of the river-lake relationship.

View Article and Find Full Text PDF

A diverse range of pollutants, including heavy metals, agrochemicals, pharmaceutical residues, illicit drugs, personal care products, and other anthropogenic contaminants, pose a significant threat to aquatic ecosystems. The Winam Gulf of Lake Victoria, heavily impacted by surrounding human activities, faces potential contamination from these pollutants. However, studies exploring the presence of antibiotic resistance genes (ARGs) in the lake remain limited.

View Article and Find Full Text PDF

Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter.

Sci Total Environ

December 2024

Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China. Electronic address:

Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!