Salinity and drought are the major osmotic stress limitations that affect plant growth and crop yield in agriculture worldwide. The alternative response mediated by plants in response to salinity and drought are principally proline accumulation which regulates stress combat strategies owing to sustainable production in the realm of agricultural production even under severe stress. Symbiotic and soil associated arbuscular mycorrhizal fungi (AMF) are regarded as efficient biofertilizers in several crops under these stresses. Summarily AMF is renowned for effective scavengers of free radicals in soil thereby increasing soil parameters optimal for plant growth. AMF contribute to augment host plant tolerance to stress specifically salinity and drought. Mycorrhizal colonization positively regulates root uptake of available nutrients and enhance growth even when bestowed by water constraints which has contributory roles due to proline accumulation providing several intriguing researches on AMF symbiosis pertaining to plant productivity and yield. Mycorrhizal plants and their non-mycorrhizal counterparts show varied expression pattern regarding proline amass. Hence, the precise role of proline with respect to stress tolerance and equivocal mechanisms involved in evasion of osmotic stress has not been extensively reviewed earlier. Further molecular forecasting in this arena is still an underexploited research field. This review comprehensively addresses the observable facts pertaining to proline accumulation upon AMF association and adherence relevant to stress tolerance and host plant efficiency and efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232873 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.02525 | DOI Listing |
J Environ Manage
December 2024
State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Zhongguancun South Street, Haidian District, Beijing, 100081, PR China.
Beneficial interactions between plant root exudates and the rhizosphere microbial community can alleviate the adverse effects of environmental stress on crop yields, but these interactions remain poorly understood in potato growing in drying soil. We investigated the responses of rhizosphere soil microorganisms and metabolites, and biochemical and physiological responses of two potato genotypes with contrasting drought tolerance (drought tolerant 'C93' and drought sensitive 'Favorita'), to two different irrigation treatments imposing contrasting soil water availability in the field. Deficit irrigation altered rhizosphere soil bacterial communities and metabolites of C93 more than Favorita.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
Background: MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily.
View Article and Find Full Text PDFJ Environ Manage
December 2024
National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:
Cadmium (Cd) is a genotoxic heavy metal causing severe toxicity symptoms in plants, which has been a major threat to worldwide crop production. Recently, nanoparticles (NPs) have been employed as a novel strategy to facilitate the Cd stress and act as nano-fertilizers directly. Therefore, this study aims to explore the effects of zinc oxide nanoparticles (ZnONPs; 15 mg/L) on plant growth, photosynthetic activity, antioxidant activity and root morphology in Capsicum chinense Jacq.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
Radish is an economically important root vegetable crop worldwide. Histone deacetylases (HDACs), one of the most important epigenetic regulators, play prominent roles in plant growth and development as well as abiotic stress responses. Nevertheless, the systematical characterization and critical roles of HDAC gene members in thermogenesis remains elusive in radish.
View Article and Find Full Text PDFPlant Mol Biol
December 2024
College of Agriculture, Guangxi University, Nanning, 530004, China.
Cold stress is an environmental factor that seriously restricts the growth, production and survival of plants, and has received extensive attention in recent years. Hydrogen sulfide (HS) is an ubiquitous gas signaling molecule, and its role in alleviating plant cold stress has become a research focus in recent years. This paper reviews for the first time the significant effect of HS on improving plant cold resistance, which makes up for the gaps in the existing literature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!