Pain and affective disorders have clear clinical relevance; however, very few studies have investigated the association between pain and bipolar disorder. This study investigated the brain activity of patients with bipolar disorder (BPs) undergoing tonic pain and assessed the interaction between pain and emotion. Ten BPs and ten healthy controls (HCs) were exposed to emotional pictures (positive, neutral, or negative), tonic pain only (pain session), and emotional pictures along with tonic pain (combined session). A moderate tonic pain was induced by the infusion of hypertonic saline (5% NaCl) into the right masseter muscle with a computer-controlled system. Whole-brain blood oxygenation level dependent (BOLD) signals were acquired using 3T functional resonance imaging (fMRI). Ten BPs and ten healthy participants were included in the final analysis. During the pain session, BPs accepted more saline, but showed lower pain rating scores than HCs. When experiencing pain, BPs showed a significant decrease in the BOLD signal in the bilateral insula, left inferior frontal gyrus (IFG), and left cerebellum as compared with HCs. In the combined session, the activated regions for positive mood (pain with positive mood > baseline) in BPs were the left cerebellum, right temporal gyrus, and left occipital gyrus; the activated regions for negative mood (pain with negative mood > baseline) were the right occipital gyrus, left insula, left IFG, and bilateral precentral gyrus. This study presents the preliminary finding of the interaction between pain and emotion in BPs. BPs exhibited lower sensitivity to pain, and the activation of insula and IFG may reflect the interaction between emotion and pain stimulus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232121 | PMC |
http://dx.doi.org/10.3389/fpsyt.2018.00555 | DOI Listing |
Eur J Pain
February 2025
Department of Neurosurgery, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France.
Background: Preliminary studies on epidural motor cortex stimulation (eMCS) for the treatment of drug-resistant neuropathic pain have supported the extension to novel stimulation waveforms, in particular burstDR. However, only a low level of evidence is available. The aim of this retrospective observational study was to compare the analgesic efficacy of burstDR versus tonic eMCS.
View Article and Find Full Text PDFFront Psychol
December 2024
Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, United States.
We introduce two Korean-named yet transcultural feelings, and , to fill gaps in neuroscientific understanding of mammalian bondedness, loss, and aggression. is a visceral sense of connectedness to a person, place, or thing that may arise after proximity, yet does not require intimacy. The brain opioid theory of social attachment (BOTSA) supports the idea that involves increased activity of enkephalins and beta-endorphins.
View Article and Find Full Text PDFPain Ther
January 2025
Research Management, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA.
Introduction: There is a high unmet need for safe and effective non-opioid medicines to treat moderate to severe pain without risk of addiction. Voltage-gated sodium channel 1.8 (Na1.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Bioengineering, University of Washington, Seattle, WA, USA.
Dysregulation in aversive contextual processing is believed to affect several forms of psychopathology, including post-traumatic stress disorder (PTSD). The dentate gyrus (DG) is an important brain region in contextual discrimination and disambiguation of new experiences from prior memories. The DG also receives dense projections from the locus coeruleus (LC), the primary source of norepinephrine (NE) in the mammalian brain, which is active during stressful events.
View Article and Find Full Text PDFDev Cell
December 2024
Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Electronic address:
Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!