MicroRNAs (miRNAs) play significant roles in both embryonic hematopoiesis and hematological malignancy. Zebrafish miR-462-731 cluster is orthologous of miR-191-425 in human which regulates proliferation and tumorigenesis. In our previous work, miR-462-731 was found highly and ubiquitously expressed during early embryogenesis. In this study, by loss-of-function analysis (morpholino knockdown combined with CRISRP/Cas9 knockout) and mRNA profiling, we suggest that miR-462-731 is required for normal embryonic development by regulating cell survival. We found that loss of miR-462/miR-731 caused a remarkable decrease in the number of erythroid cells as well as an ectopic myeloid cell expansion at 48 hpf, suggesting a skewing of myeloid-erythroid lineage differentiation. Mechanistically, miR-462-731 provides an instructive input for pu.1-dependent primitive myelopoiesis through regulating etsrp/scl signaling combined with a novel pu.1/miR-462-731 feedback loop. On the other hand, morpholino (MO) knockdown of miR-462/miR-731 resulted in an expansion of posterior blood islands at 24 hpf, which is a mild ventralization phenotype resulted from elevation of BMP signaling. Rescue experiments with both BMP type I receptor inhibitor dorsomorphin and alk8 MO indicate that miR-462-731 acts upstream of alk8 within the BMP/Smad signaling pathway and functions as a novel endogenous BMP antagonist. Besides, an impairment of angiogenesis was observed in miR-462/miR-731 morphants. The specification of arteries and veins was also perturbed, as characterized by the irregular patterning of efnb2a and flt4 expression. Our study unveils a previously unrecognized role of miR-462-731 in BMP/Smad signaling mediated hematopoietic specification of mesodermal progenitors and demonstrates a miR-462-731 mediated regulatory mechanism driving primitive myelopoiesis in the ALPM. We also show a requirement for miR-462-731 in regulating arterial-venous specification and definitive hematopoietic stem cell (HSC) production. The current findings might provide further insights into the molecular mechanistic basis of miRNA regulation of embryonic hematopoiesis and hematological malignancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748110 | PMC |
http://dx.doi.org/10.1038/s41418-018-0234-0 | DOI Listing |
Cell Death Discov
May 2024
Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China.
Hematopoiesis ensures tissue oxygenation, and remodeling as well as immune protection in vertebrates. During embryogenesis, hemangioblasts are the source of all blood cells. Gata1a and pu.
View Article and Find Full Text PDFTissue Cell
February 2023
Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.
Microgravity is known negatively affect physiology of living beings, including hematopoiesis. Dysregulation of hematopoietic cells and supporting stroma relationships in bone marrow niche may be in charge. We compared the efficacy of ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) in presence of native or osteocommitted MSCs under simulated microgravity (Smg) using Random Positioning Machine (RPM).
View Article and Find Full Text PDFDevelopment
December 2022
Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311100, China.
Hematopoiesis is a highly coordinated process that generates all the body's blood cells, and perturbations in embryonic hematopoiesis may result in illnesses ranging from fetal anemia to various leukemias. Correct establishment of hematopoietic progenitor cell fate is essential for the development of adequate blood cell subpopulations, although regulators of cell fate commitment have not been fully defined. Here, we show that primary erythropoiesis and myelopoiesis in zebrafish embryos are synergistically regulated by blf and the drl cluster, as simultaneous depletion led to severe erythrocyte aplasia and excessive macrophage formation at the expense of neutrophil development.
View Article and Find Full Text PDFJ Interferon Cytokine Res
August 2022
Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico.
The recognition of pathogens to which we are constantly exposed induces the immediate replenishment of innate immune cells from the most primitive stages of their development through emergency hematopoiesis, a central mechanism contributing to early infection control. However, as with other protective mechanisms, its functional success is at risk when the excess of inducing signals accelerates immunological catastrophes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection exhibits a clinical spectrum that ranges from completely asymptomatic states to fatal outcomes, with the amplification of inflammatory components being the critical point that determine the progress, complication, and severity of the disease.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2021
Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom.
Germline loss or mutation of one copy of the transcription factor GATA2 in humans leads to a range of clinical phenotypes affecting hematopoietic, lymphatic and vascular systems. GATA2 heterozygous mice show only a limited repertoire of the features observed in humans. Zebrafish have two copies of the Gata2 gene as a result of an additional round of ancestral whole genome duplication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!