The highly conserved zinc finger CCCTC-binding factor (CTCF) regulates genomic imprinting and gene expression by acting as a transcriptional activator or repressor of promoters and insulator of enhancers. The multiple functions of CTCF are accomplished by co-association with other protein partners and are dependent on genomic context and tissue specificity. Despite the critical role of CTCF in the organization of genome structure, to date, only a subset of CTCF interaction partners have been identified. Here we present a large-scale identification of CTCF-binding partners using affinity purification and high-resolution LC-MS/MS analysis. In addition to functional enrichment of specific protein families such as the ribosomal proteins and the DEAD box helicases, we identified novel high-confidence CTCF interactors that provide a still unexplored biochemical context for CTCF's multiple functions. One of the newly validated CTCF interactors is BRG1, the major ATPase subunit of the chromatin remodeling complex SWI/SNF, establishing a relationship between two master regulators of genome organization. This work significantly expands the current knowledge of the human CTCF interactome and represents an important resource to direct future studies aimed at uncovering molecular mechanisms modulating CTCF pleiotropic functions throughout the genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341399 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.004882 | DOI Listing |
Acta Pharmacol Sin
January 2025
State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
The importance of ferroptosis in the occurrence and progression of atherosclerosis is gradually being recognized. The stimulatory G protein α subunit (Gsα) plays a crucial role in the physiology of endothelial cells (ECs). Our previous study showed that endothelial Gsα could regulate angiogenesis and preserve endothelial permeability.
View Article and Find Full Text PDFAging Cell
January 2025
Temasek Life Sciences Laboratory, Singapore, Singapore.
Multimodal study of Alzheimer's disease (AD) dorsolateral prefrontal cortex (DLPFC) showed AD-related aberrant intron retention (IR) and proteomic changes not observed at the RNA level. However, the role of sex and how IR may impact the proteome are unclear. Analysis of DLPFC transcriptome showed a clear sex-biased pattern where female AD had 1645 elevated IR events compared to 80 in male AD DLPFC.
View Article and Find Full Text PDFGene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.
View Article and Find Full Text PDFWhile inputs regulating CD4 T helper cell (Th) differentiation are well-defined, the integration of downstream signaling with transcriptional and epigenetic programs that define Th-lineage identity remain unresolved. PI3K signaling is a critical regulator of T cell function; activating mutations affecting PI3Kδ result in an immunodeficiency with multiple T cell defects. Using mice expressing activated-PI3Kδ, we found aberrant expression of proinflammatory Th1-signature genes under Th2-inducing conditions, both and .
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by widespread inflammation and autoantibody production. Its development and progression involve genetic, epigenetic, and environmental factors. Although genome-wide association studies (GWAS) have repeatedly identified a susceptibility signal at 16p13, its fine-scale source and its functional and mechanistic role in SLE remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!