Human Stress-inducible Hsp70 Has a High Propensity to Form ATP-dependent Antiparallel Dimers That Are Differentially Regulated by Cochaperone Binding.

Mol Cell Proteomics

BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic;. Electronic address:

Published: February 2019

Eukaryotic protein homeostasis (proteostasis) is largely dependent on the action of highly conserved Hsp70 molecular chaperones. Recent evidence indicates that, apart from conserved molecular allostery, Hsp70 proteins have retained and adapted the ability to assemble as functionally relevant ATP-bound dimers throughout evolution. Here, we have compared the ATP-dependent dimerization of DnaK, human stress-inducible Hsp70, Hsc70 and BiP Hsp70 proteins, showing that their dimerization propensities differ, with stress-inducible Hsp70 being predominantly dimeric in the presence of ATP. Structural analyses using hydrogen/deuterium exchange mass spectrometry, native electrospray ionization mass spectrometry and small-angle X-ray scattering revealed that stress-inducible Hsp70 assembles in solution as an antiparallel dimer with the intermolecular interface closely resembling the ATP-bound dimer interfaces captured in DnaK and BiP crystal structures. ATP-dependent dimerization of stress-inducible Hsp70 is necessary for its efficient interaction with Hsp40, as shown by experiments with dimerization-deficient mutants. Moreover, dimerization of ATP-bound Hsp70 is required for its participation in high molecular weight protein complexes detected , supporting its functional role As human cytosolic Hsp70 can interact with tetratricopeptide repeat (TPR) domain containing cochaperones, we tested the interaction of Hsp70 ATP-dependent dimers with Chip and Tomm34 cochaperones. Although Chip associates with intact Hsp70 dimers to form a larger complex, binding of Tomm34 disrupts the Hsp70 dimer and this event plays an important role in Hsp70 activity regulation. In summary, this study provides structural evidence of robust ATP-dependent antiparallel dimerization of human inducible Hsp70 protein and suggests a novel role of TPR domain cochaperones in multichaperone complexes involving Hsp70 ATP-bound dimers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356074PMC
http://dx.doi.org/10.1074/mcp.RA118.001044DOI Listing

Publication Analysis

Top Keywords

stress-inducible hsp70
20
hsp70
16
human stress-inducible
8
atp-dependent antiparallel
8
hsp70 proteins
8
atp-bound dimers
8
atp-dependent dimerization
8
mass spectrometry
8
tpr domain
8
domain cochaperones
8

Similar Publications

Co-chaperones are key elements of cellular protein quality control. They cooperate with the major heat shock proteins Hsp70 and Hsp90 in folding proteins and preventing the toxic accumulation of misfolded proteins upon exposure to stress. Hsp90 interacts with the co-chaperone stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) and activator of Hsp90 ATPase protein 1 (Aha1) among many others.

View Article and Find Full Text PDF

Radiosensitizing capacity of fenofibrate in glioblastoma cells depends on lipid metabolism.

Redox Biol

December 2024

Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany. Electronic address:

Despite advances in multimodal therapy approaches such as resection, chemotherapy and radiotherapy, the overall survival of patients with grade 4 glioblastoma (GBM) remains extremely poor (average survival time <2 years). Altered lipid metabolism, which increases fatty acid synthesis and thereby contributes to radioresistance in GBM, is a hallmark of cancer. Therefore, we explored the radiosensitizing effect of the clinically approved, lipid-lowering drug fenofibrate (FF) in different GBM cell lines (U87, LN18).

View Article and Find Full Text PDF
Article Synopsis
  • Slow-release GnRH agonist implants are used in male dogs for contraception, and their effects are reversible, although safety concerns exist.
  • A study was conducted to investigate the impact of these implants on testicular stress and androgen receptor signaling in dogs after the implants were removed, comparing them to untreated controls.
  • Results showed both upregulation and downregulation of various proteins related to stress response and androgen receptors, indicating that GnRH implants do not increase cellular stress compared to natural breeding cycles, but more research is needed on hypoxic conditions.
View Article and Find Full Text PDF

Extracellular Hsp70 and Circulating Endometriotic Cells as Novel Biomarkers for Endometriosis.

Int J Mol Sci

October 2024

Radiation Immuno-Oncology, TranslaTUM-Central Institute for Translational Cancer Research, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany.

Stress-inducible heat shock protein 70 (Hsp70), which functions as a molecular chaperone and is frequently overexpressed in different cancer cell types, is present on the cell surface of tumor cells and is actively released into the circulation in free and extracellular lipid vesicle-associated forms. Since the exact pathomechanism of endometriosis has not yet been elucidated (although it has been associated with the development of endometrial and ovarian cancer), we asked whether extracellular Hsp70 and circulating endometriotic cells (CECs) reflect the presence and development of endometriosis. Therefore, circulating levels of free and lipid microvesicle-associated Hsp70 were measured using the Hsp70-exo ELISA, and the presence of circulating CECs in the peripheral blood of patients with endometriosis was determined using membrane Hsp70 (mHsp70) and EpCAM monoclonal antibody (mAb)-based bead isolation approaches.

View Article and Find Full Text PDF

Protein Misfolding Releases Human HSF1 from HSP70 Latency Control.

J Mol Biol

October 2024

Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden. Electronic address:

Heat shock factor 1 (HSF1) responds to stress to mount the heat shock response (HSR), a conserved transcriptional program that allows cells to maintain proteostasis by upregulating heat shock proteins (HSPs). The homeostatic stress regulation of HSF1 plays a key role in human physiology and health but its mechanism has remained difficult to pinpoint. Recent work in the budding yeast model has implicated stress-inducible chaperones of the HSP70 family as direct negative regulators of HSF1 activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!