This paper aims to develop a data-driven model for glucose dynamics taking into account the effects of physical activity (PA) through a numerical study. It intends to investigate PA's immediate effect on insulin-independent glucose variation and PA's prolonged effect on insulin sensitivity. We proposed a nonlinear model with PA (NLPA), consisting of a linear regression of PA and a bilinear regression of insulin and PA. The model was identified and evaluated using data generated from a physiological PA-glucose model by Dalla Man et al. integrated with the uva/padova Simulator. Three metrics were computed to compare blood glucose (BG) predictions by NLPA, a linear model with PA (LPA), and a linear model with no PA (LOPA). For PA's immediate effect on glucose, NLPA and LPA showed 45-160% higher mean goodness of fit (FIT) than LOPA under 30 min-ahead glucose prediction (P < 0.05). For the prolonged PA effect on glucose, NLPA showed 87% higher FIT than LPA (P < 0.05) for simulations using no previous measurements. NLPA had 25-37% and 31-54% higher sensitivity in predicting postexercise hypoglycemia than LPA and LOPA, respectively. This study demonstrated the following qualitative trends: (1) for moderate-intensity exercise, accuracy of BG prediction was improved by explicitly accounting for PA's effect; and (2) accounting for PA's prolonged effect on insulin sensitivity can increase the chance of early prediction of postexercise hypoglycemia. Such observations will need to be further evaluated through human subjects in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.4041522 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!