In our previous studies, Chlorella vulgaris had proven highly efficient in removing selenium (Se) from water, while the disposal of Se containing in algal biomass was still an issue of concern. Firstly, this research suggests algal Se could be released back to water, posing risks to aquatic wildlife. Thus, we further explored the possibility of using C. vulgaris to remove Se and produce lipid and hydrogen simultaneously. Our results show the higher percentage of saturated fatty acids, especially palmitic acid, was found in the sulfur (S) deprived algae exposed to either selenate or selenite, although the highest lipid content (21.9%) was found in the selenite treated algae in full BG11 medium. In addition, compared with the Se free algae, hydrogen production rate was 2.1- and 4.3-fold higher for the selenate and selenite treated algae, respectively. Se removal efficiency achieved by the selenite treated algae through accumulation and volatilization was 2.3-fold higher than the selenate treatment under hypoxic condition with S deprived, which is in contrast to the results obtained under aerobic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.11.075DOI Listing

Publication Analysis

Top Keywords

selenite treated
12
treated algae
12
removal efficiency
8
lipid hydrogen
8
chlorella vulgaris
8
selenate selenite
8
higher selenate
8
algae
5
relationship selenium
4
selenium removal
4

Similar Publications

Biological semi-passive mine water treatment technologies are used in the mining industry as an alternative to or in conjunction with active treatment systems to remediate mine impacted water (MIW) containing nitrate and selenium oxyanions such as selenate and selenite. In semi-passive biological treatment systems, MIW is pumped through a saturated, porous media (either a gravel bed or waste rock) which provides ample surface area for biofilm growth and the creation of anoxic, subaqueous environments. Additional nutrients and carbon sources are pumped into the system to encourage the growth of microbes that biochemically reduce selenate and selenite to insoluble reduced Se species such as selenium nanoparticles (SeNP) by respiring selenate and selenite.

View Article and Find Full Text PDF

We previously used high pressure liquid chromatography (HPLC) coupled with Se-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (ESI Orbitrap MS/MS) detection to study the increase in liver Se in turkeys and rats supplemented as selenite in high-Se (5 µg Se/g diet) and adequate-Se diets. We found that far more Se is present as selenosugar (seleno-N-acetyl galactosamine) than is present as selenocysteine (Sec) in true selenoproteins. In high-Se liver, the increase in liver Se was due to low molecular weight (LMW) selenometabolites as glutathione-, cysteine- and methyl-conjugates of the selenosugar, but also as high molecular weight (HMW) species as selenosugars decorating general proteins via mixed-disulfide bonds.

View Article and Find Full Text PDF

Background: Antibiotic resistance in various microorganisms has become one of the most serious health problems worldwide. The use of nanoparticles in combination with conventional antibiotics is one of the recent efforts to overcome these challenges. This study aims to synthesize and evaluate the possibility of using amikacin-loaded selenium nanoparticles as antibacterial agent against multidrug-resistant , that causes bovine mastitis.

View Article and Find Full Text PDF

Self-augmented catabolism mediated by Se/Fe co-doped bioceramics boosts ROS storm for highly efficient antitumor therapy of bone scaffolds.

Colloids Surf B Biointerfaces

April 2025

Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China. Electronic address:

The overexpression of glutathione (GSH) within the tumor microenvironment has long been considered as the major obstacle for reactive oxygen species (ROS)-based antitumor therapies. To address this challenge, a selenite (SeO) and ferric ion co-doped hydroxyapatite (SF-HAP) nanohybrid was synthesized, which is then introduced into poly-L-lactic acid (PLLA) to prepare porous scaffold by selective laser sintering to continuously release Fe and SeO ions. Of great significance is the released SeO catabolize GSH to generate superoxide anion (O) rather than directly eliminating GSH, thereby reversing the obstacle posed by its overexpression and achieving a "waste-to-treasure" transformation.

View Article and Find Full Text PDF

Effect of combination of polyphenols, polysaccharide, and sodium selenite on bortezomib anti-cancer action.

Int J Biol Macromol

December 2024

Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India. Electronic address:

Combinatorial drug delivery has shown promising results over single drug for cancer therapy. Here, we aimed to explore combination of proteasome inhibitor; bortezomib (BTZ) with natural antioxidants (AOs); polyphenols like caffeic acid (CFA), resveratrol (RES), fucoidan (FD), and synthetic AO; sodium selenite (NaSeO) for cellular cytotoxicity in breast cancer cell lines; MCF-7 and MDA MB-231. The combination of RES + BTZ, FD + BTZ, and NaSeO + BTZ showed synergism while CFA showed antagonism with BTZ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!