Remediation of engineered-nanomaterials is an up-coming major environmental concern. This study demonstrates adsorptive-remediation of cobalt oxide nanoparticles (CoO NPs) from the water. The α-cellulose-fibers were extracted from waste-paper biomass (WP-αCFs) and magnetized with FeO NPs (M-WP-αCFs). The XRD, FT-IR, and TGA were performed for detailed characterization of the newly developed bioadsorbent. The M-WP-αCFs was then applied for adsorptive remediation of CoO NPs. The adsorptive kinetics of CoO NPs adsorption onto the M-WP-αCFs reveals the pseudo-second-order model. The various adsorption isotherm studies revealed Langmuir is a best-fit isotherm. A prominently high adsorption capacity q (1567 mg/g) corroborated extraordinary adsorptive potential of M-WP-αCFs. Furthermore, CoO NPs were adsorbed onto M-WP-αCFs were analyzed by the XPS, VSM, and TEM. Therefore, this study gave rise WP biomass extracted and rapidly-separable nano-biocomposite of 'M-WP-αCFs' with a high-capacity for CoO NPs remediation and can be further applied in remediation of several other engineered-nanomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2018.11.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!