Bioaccumulation and ecotoxicological responses of juvenile white seabream (Diplodus sargus) exposed to triclosan, warming and acidification.

Environ Pollut

Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho 6, Lisboa, 1495-006, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, Matosinhos, 4450-208, Portugal.

Published: February 2019

Triclosan (TCS) is a synthetic microbial compound widely used in the formulation of various personal care products. Its frequent detection in marine ecosystems, along with its physical and chemical properties, suggest that TCS can be highly persistent, being easily bioaccumulated by biota and, therefore, eliciting various toxicological responses. Yet, TCS's mechanisms of bioaccumulation and toxicity still deserve further research, particularly focusing on the interactive effects with climate change-related stressors (e.g. warming and acidification), as both TCS chemical behaviour and marine species metabolism/physiology can be strongly influenced by the surrounding abiotic conditions. Hence, the aim of this study was to assess TCS bioaccumulation and ecotoxicological effects (i.e. animal fitness indexes, antioxidant activity, protein chaperoning and degradation, neurotoxicity and endocrine disruption) in three tissues (i.e. brain, liver and muscle) of juvenile Diplodus sargus exposed to the interactive effects of TCS dietary exposure (15.9 μg kg dw), seawater warming (ΔTºC = +5 °C) and acidification (ΔpCO ∼ +1000 μatm, equivalent to ΔpH = -0.4 units). Muscle was the primary organ of TCS bioaccumulation, and climate change stressors, particularly warming, significantly reduced TCS bioaccumulation in all fish tissues. Furthermore, the negative ecotoxicological responses elicited by TCS were significantly altered by the co-exposure to acidification and/or warming, through either the enhancement (e.g. vitellogenin content) or counteraction/inhibition (e.g. heat shock proteins HSP70/HSC70 content) of molecular biomarker responses, with the combination of TCS plus acidification resulting in more severe alterations. Thus, the distinct patterns of TCS tissue bioaccumulation and ecotoxicological responses induced by the different scenarios emphasized the need to further understand the interactive effects between pollutants and abiotic conditions, as such knowledge enables a better estimation and mitigation of the toxicological impacts of climate change in marine ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2018.11.020DOI Listing

Publication Analysis

Top Keywords

bioaccumulation ecotoxicological
12
ecotoxicological responses
12
interactive effects
12
tcs bioaccumulation
12
tcs
10
diplodus sargus
8
sargus exposed
8
warming acidification
8
marine ecosystems
8
stressors warming
8

Similar Publications

Stress signaling, response, and adaptive mechanisms in submerged macrophytes under PFASs and warming exposure.

Environ Pollut

January 2025

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Heat stress disturbs cellular homeostasis and alters the fitness of individual organisms. However, it is unclear whether thermal perturbations exacerbate the toxic effects of per- and polyfluorinated alkyl substances (PFASs) on trophic endpoints in freshwater ecosystems. We conducted a mesocosm experiment to investigate the impact of warming and PFASs on the widespread submerged macrophytes (Hydrilla verticillata) at a molecular level.

View Article and Find Full Text PDF

The presence of microplastics (MPs) in aquatic ecosystem has become a pressing global concern. MPs pose a significant threat to aquatic ecosystems, with devastating consequences for both aquatic life and human health. Notably, freshwater ecosystems are particularly vulnerable to MPs pollution.

View Article and Find Full Text PDF

Ecological effects of micro/nanoplastics on plant-associated food webs.

Trends Plant Sci

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China. Electronic address:

Micro/nanoplastics (MNPs) contamination is a potential threat to global biodiversity and ecosystem functions, with unclear ecological impacts on aboveground (AG) and belowground (BG) food webs in terrestrial ecosystems. Here, we discuss the uptake, ingestion, bioaccumulation, and ecotoxicological effects of MNPs in plants and associated AG-BG biota at various trophic levels. We propose key pathways for MNPs transfer between the AG-BG food webs and elaborate their impact on terrestrial ecosystem multifunctionality.

View Article and Find Full Text PDF

Health check-up of a freshwater bivalve exposed to lithium.

Environ Pollut

December 2024

Université de Lorraine, LIEC, CNRS, F-57000, Metz, France. Electronic address:

Lithium (Li) has become essential for energy and digital transitions, especially as a component of rechargeable batteries. Its growing uses worldwide lead to increasing anthropogenic releases of Li into the environment, which is making Li as an emerging contaminant. It is thus critical to evaluate the ecotoxicological impact of Li, which has been poorly studied unlike its human toxicology.

View Article and Find Full Text PDF

The broader soil bacterial community responses at ecotoxicologically relevant levels of nano ZnO (nZnO) focussing on co-selection of antibiotic resistance (AR) were investigated. nZnO imposed a stronger influence than the bulk counterpart (bZnO) on antibiotic resistance genes (ARGs) with multidrug resistance (MDR) systems being predominant (63 % of total ARGs). Proliferation of biomarker ARGs especially for last resort antibiotic like vancomycin was observed and Streptomyces hosted multiple ARGs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!