Intermittent Low-level Noise Causes Negative Neural Gain in the Inferior Colliculus.

Neuroscience

Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA; Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan, ROC.

Published: May 2019

The central auditory system shows a remarkable ability to rescale its neural representation of loudness following long-term, low-level acoustic exposures; even when the noise is presented intermittently. Circadian rhythms exert potent biological effects, but it remains unclear if acoustic exposures occurring during the light or dark cycle affect the neurophysiological changes involved in loudness rescaling. To address this issue we exposed rats to intermittent (12 h/day), low-level noise (10-20 kHz, 75 dB SPL) for 5 weeks; exposures occurred during either the light (inactive) or dark (active) phase of the circadian cycle. The 12-h exposures, whether occurring during the light or dark phase, did not significantly alter cochlear function as reflected in distortion product otoacoustic emissions and compound action potential responses. However, neural activity in the inferior colliculus demonstrated negative gain in a frequency- and intensity-specific manner compared to unexposed controls; the magnitude and direction of the neuroplastic changes in the inferior colliculus were largely the same regardless of whether the 12-h noise exposures occurred during the light or dark phase of the circadian cycle. These neuroplastic changes could become relevant for low-level sound therapies used to treat hyperacusis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2018.11.013DOI Listing

Publication Analysis

Top Keywords

inferior colliculus
12
light dark
12
low-level noise
8
acoustic exposures
8
exposures occurring
8
occurring light
8
exposures occurred
8
occurred light
8
phase circadian
8
circadian cycle
8

Similar Publications

The inferior colliculus (IC) is an important midbrain station of the auditory pathway, as well as an important hub of multisensory integration. The adult mammalian IC can be subdivided into three nuclei, with distinct cyto- and myeloarchitectonical profiles and distinct calcium binding proteins expression patterns. Despite several studies about its structural and functional development, the knowledge about the human fetal IC is rather limited.

View Article and Find Full Text PDF

Auditory processing in the cerebral cortex is considered to begin with thalamocortical inputs to layer 4 (L4) of the primary auditory cortex (A1). In this canonical model, A1 L4 inputs initiate a hierarchical cascade, with higher-order cortices receiving pre-processed information for the slower integration of complex sounds. Here, we identify alternative ascending pathways in mice that bypass A1 and directly reach multiple layers of the secondary auditory cortex (A2), indicating parallel activation of these areas alongside sequential information processing.

View Article and Find Full Text PDF

Neuroimaging model of visceral manipulation in awake rat.

J Neurosci

January 2025

The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA

Reciprocal neuronal connections exist between the internal organs of the body and the nervous system. These projections to and from the viscera play an essential role in maintaining and finetuning organ responses in order to sustain homeostasis and allostasis. Functional maps of brain regions participating in this bidirectional communication have been previously studied in awake humans and anesthetized rodents.

View Article and Find Full Text PDF

Role of the Dorsal Cortex of the Inferior Colliculus in the Precedence Effect.

Med Sci Monit

January 2025

Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

BACKGROUND The precedence effect (PE) is a physiological phenomenon for accurate sound localization in a reverberant environment. Physiological studies of PE have mostly focused on the central nucleus of the inferior colliculus (CNIC), which receives ascending and descending projections, as well as projections from the shell of the inferior colliculus (IC) and contralateral IC. However, the role of the dorsal cortex of the IC (DCIC), which receives ascending and descending projections to ensure sound information processing and conduction on PE formation, remains unclear.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!