Microscopic Models of Drug/Chemical Diffusion Through the Skin Barrier: Effects of Diffusional Anisotropy of the Intercellular Lipid.

J Pharm Sci

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200. Electronic address:

Published: May 2019

Owing to the systematic alignment and ordering of fatty acid and ceramide chains, lipid layers in biological membranes have strongly anisotropic diffusion properties. The diffusivity D for solute transport in the direction parallel to the lipid layer is typically 10-10 times the diffusivity D for the perpendicular direction. This article explores the consequences of this strong degree of anisotropy on solute diffusion through the stratum corneum (barrier) layer of the skin based on a realistic representation of a unit cell of the microstructure. Complementary numerical methods (smoothed particle hydrodynamics, finite differences) are used to solve the steady-state unit-cell diffusion problem leading to the average (homogenized, coarse-grained) diffusion tensor characterizing the tissue as an effective continuum. A parametric study is presented characterizing solute concentration profiles in detail for testosterone- and caffeine-like permeants, and it is shown that the results cannot be mimicked by calculations based on an isotropic lipid-phase diffusivity. The ratio of lateral to transdermal effective diffusivities calculated by the present model is of the order of 40 and 300 for fully hydrated (in vitro) and partially hydrated (in vivo) states, respectively. These values compare favorably with the results of recent experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2018.11.014DOI Listing

Publication Analysis

Top Keywords

diffusion
5
microscopic models
4
models drug/chemical
4
drug/chemical diffusion
4
diffusion skin
4
skin barrier
4
barrier effects
4
effects diffusional
4
diffusional anisotropy
4
anisotropy intercellular
4

Similar Publications

Enhancing Medical Student Engagement Through Cinematic Clinical Narratives: Multimodal Generative AI-Based Mixed Methods Study.

JMIR Med Educ

January 2025

Department of Medical Education, University of Idaho, 875 Perimeter Drive MS 4061, WWAMI Medical Education, Moscow, ID, 83844-9803, United States, 1 5092090908.

Background: Medical students often struggle to engage with and retain complex pharmacology topics during their preclinical education. Traditional teaching methods can lead to passive learning and poor long-term retention of critical concepts.

Objective: This study aims to enhance the teaching of clinical pharmacology in medical school by using a multimodal generative artificial intelligence (genAI) approach to create compelling, cinematic clinical narratives (CCNs).

View Article and Find Full Text PDF

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.

View Article and Find Full Text PDF

MXenes, have been considered as a new generation anode material in lithium-ion batteries for lower lithium-ion diffusion barriers and superior conductivity. Unfortunately, their structures are prone to aggregation and stacking, hindering further shuttle of lithium ions and electrons, resulting in lower discharge capacity. Therefore, the introduction of interlayer spacers for the preparation of MXene-based hybrids has attracted much attention.

View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!