Fecal microbiota transplantation in cancer management: Current status and perspectives.

Int J Cancer

Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.

Published: October 2019

The human gut is home to a large and diverse microbial community, comprising about 1,000 bacterial species. The gut microbiota exists in a symbiotic relationship with its host, playing a decisive role in the host's nutrition, immunity and metabolism. Accumulating studies have revealed the associations between gut dysbiosis or some special bacteria and various cancers. Emerging data suggest that gut microbiota can modulate the effectiveness of cancer therapies, especially immunotherapy. Manipulating the microbial populations with therapeutic intent has become a hot topic of cancer research, and the most dramatic manipulation of gut microbiota refers to fecal microbiota transplantation (FMT) from healthy individuals to patients. FMT has demonstrated remarkable clinical efficacy against Clostridium difficile infection (CDI) and it is highly recommended for the treatment of recurrent or refractory CDI. Lately, interest is growing in the therapeutic potential of FMT for other diseases, including cancers. We briefly reviewed the current researches about gut microbiota and its link to cancer, and then summarized the recent preclinical and clinical evidence to indicate the potential of FMT in cancer management as well as cancer-treatment associated complications. We also presented the rationale of FMT for cancer management such as reconstruction of intestinal microbiota, amelioration of bile acid metabolism, and modulation of immunotherapy efficacy. This article would help to better understand this new therapeutic approach for cancer patients by targeting gut microbiota.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767494PMC
http://dx.doi.org/10.1002/ijc.32003DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
cancer management
12
fecal microbiota
8
microbiota transplantation
8
potential fmt
8
fmt cancer
8
cancer
7
gut
7
microbiota
7
fmt
5

Similar Publications

Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.

View Article and Find Full Text PDF

Brd4 modulates metabolic endotoxemia-induced inflammation by regulating colonic macrophage infiltration in high-fat diet-fed mice.

Commun Biol

December 2024

Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.

High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage.

View Article and Find Full Text PDF

The gut microbiota alterations interact with the pathogenesis and progression of chronic kidney disease (CKD). Probiotics have received wide attention as a potential management in CKD. We investigated the effects of Lactobacillus paracasei N1115 (LP N1115) on intestinal microbiota and related short-chain fatty acids (SCFAs) in end stage kidney disease patients on peritoneal dialysis (PD) in a single-center, prospective, randomized, double-blind, placebo-controlled study.

View Article and Find Full Text PDF

Profiling and comprehensive analysis of microbiome and ARGs of nurses and nursing workers in China: a cross-sectional study.

Sci Rep

December 2024

Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.

Hospital-acquired infection (HAI) and antimicrobial resistance (AMR) represent major challenges in healthcare system. Despite numerous studies have assessed environmental and patient samples, very few studies have explored the microbiome and resistome profiles of medical staff including nursing workers. This cross-sectional study was performed in a tertiary hospital in China and involved 25 nurses (NSs), 25 nursing workers (NWs), and 55 non-medical control (NC).

View Article and Find Full Text PDF

Short-chain fatty acids play a key role in antibody response to SARS-CoV-2 infection in people living with HIV.

Sci Rep

December 2024

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.

High SARS-CoV-2-specific antibody levels can protect against SARS-CoV-2 reinfection. The gut microbiome can affect a host's immune response. However, its role in the antibody response to SARS-CoV-2 in people living with HIV (PLWH) remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!