Release of silver ions (Ag) is often regarded as the major cause for silver nanoparticle (AgNP) toxicity toward aquatic organisms. Nevertheless, differentiating AgNPs and Ag in a complicated biological matrix and their dissolution remains a bottleneck in our understanding of AgNP behavior in living organisms. Here, we directly visualized and quantified the time-dependent release of Ag from different sized AgNPs in an in vivo model zooplankton ( Daphnia magna). A fluorogenic Ag sensor was used to selectively detect and localize the released Ag in daphnids. We demonstrated that the ingested AgNPs were dissoluted to Ag, which was heterogeneously distributed in daphnids with much higher concentration in the anterior gut. At dissolution equilibrium, a total of 8.3-9.7% of ingested AgNPs was released as Ag for 20 and 60 nm AgNPs. By applying a pH sensor, we further showed that the dissolution of AgNPs was partially related to the heterogeneous distribution of pH in different gut sections of daphnids. Further, Ag was found to cross the gills and enter the daphnids, which may be a potential pathway leading to AgNP toxicity. Our findings provided fundamental knowledge about the transformation of AgNPs and distribution of Ag in daphnids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.8b06003 | DOI Listing |
PeerJ
January 2025
Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
An innovative approach to ticks and insect pests management is necessary to mitigate the challenges posed by the indiscriminate use of chemical pesticides, which can lead to resistance development and environmental pollution. Despite their great potential, biological control agents have significant manufacturing, application, and stability limitations. Currently, using phytochemicals, biosynthesized nanoparticles, and bioagents to get rid of arthropods might be a good alternative that would make farmers less worried about residues and resistance.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Pharmacy, Changzhou University, Changzhou, People's Republic of China.
Introduction: Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degeneration. Chondrocyte inflammation, apoptosis, and extracellular matrix degradation accelerated OA progression. MicroRNA (miRNA) has the potential to be a therapeutic method for osteoarthritis.
View Article and Find Full Text PDFFood Chem
January 2025
CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:
Deoxynivalenol, a hazardous mycotoxin, poses significant health risks to humans and animals, necessitating highly sensitive detection methods due to its low abundance in food. Herein, we present a colorimetric sensing strategy for deoxynivalenol detection based on the inhibitory effect of silver ions on the peroxidase-like activity of Ni@Pt nanoparticles. Silver ions adsorb onto the surface of Ni@Pt nanoparticles, blocking the active site and consequently impeding their catalytic activity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain. Electronic address:
Titanium is widely used for implants however it presents limitations such as infection risk, stress shielding phenomenon, and poor osseointegration. To address these issues, a novel approach was proposed that involves fabricating porous titanium substrates, to reduce implant stiffness, minimizing stress shielding and bone resorption, and applying polymeric coatings to improve bioactivity. Composite coating prepared from chitosan, silver nanoparticles, and nanohydroxyapatite was optimized to enhance antibacterial properties and promote osseointegration.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China. Electronic address:
Coal fly ash, a waste byproduct of coal-fired power plants rich in silica, is produced in vast quantities, exceeding 750 million tons annually. This abundance underscores the importance of finding sustainable and value-added applications for its reuse. Silver nanoparticle-silica composites represent a class of inorganically hybrid antimicrobial agents as the protection layer of cotton fabrics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!