Stability of small cationic platinum clusters.

Phys Chem Chem Phys

Laboratory of Solid State Physics and Magnetism, KU Leuven, 3001 Leuven, Belgium.

Published: November 2018

The relative stability of small cationic platinum clusters is investigated by photofragmentation experiments. Mass spectra show a smooth intensity distribution except for a local intensity minimum at Pt5+, revealing enhanced stability of the platinum tetramer Pt4+. The possibility that radiative cooling competes with statistical fragmentation after photoexcitation is examined and it is shown that clusters in the N = 3-8 size range do not radiate on the time scale of the experiment. In the absence of radiative cooling, the mass spectra of photofragmented clusters can be well explained by dissociation energies computed using density functional theory. The large calculated HOMO-LUMO gap for Pt4+ (∼1.2 eV) is attributed to its highly symmetric structure and provides an explanation for the surprisingly low reactivity of this cluster in different gas-phase reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp06092dDOI Listing

Publication Analysis

Top Keywords

stability small
8
small cationic
8
cationic platinum
8
platinum clusters
8
mass spectra
8
radiative cooling
8
clusters
4
clusters relative
4
relative stability
4
clusters investigated
4

Similar Publications

Impacts of climate change on storm event-based flow regime and channel stability of urban headwater streams.

J Environ Manage

January 2025

Tetra Tech, Inc., P.O. Box 14409, Research Triangle Park, NC, 27709, United States. Electronic address:

Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.

View Article and Find Full Text PDF

Background: Resection of calcified meningiomas in the ventral thoracic spinal canal remains a formidable surgical challenge despite advances in technology and refined microsurgical techniques. These tumors, which account for a small percentage of spinal meningiomas, are characterized by their hardness, complicating safe resection and often resulting in worse outcomes than their noncalcified counterparts.

Observations: The authors present the case of a 68-year-old woman with a ventrally located ossified meningioma at the T9-10 level, successfully treated via a posterolateral transpedicular approach.

View Article and Find Full Text PDF

B- and N-heterocyclic fluorophores have reveal promising efficiency in blue organic light-emitting diodes (OLEDs) with small full-width-at-half-maximum (FWHM). However, their structural determinants for spectral broadening and operating stability are still needed to be investigated in further. Herein, a novel multi-N-heterocycles Diindolo[3,2,1jk:3',2',1'jk]dicarbazole[1,2-b:4,5-b] (DIDCz) is proposed to manipulate the emission color toward pure blue region by extending π-conjugation of the N-π-N bridge.

View Article and Find Full Text PDF

Objectives: The goal of this systematic review was to critically appraise the existing evidence evaluating osteoporosis' effects on dental implant osseointegration and survival rate.

Data Source: A search was conducted in two databases, PubMed/MEDLINE and Scopus, until October 2024, using the keywords 'osteoporosis,' 'osteopenia,' 'osseointegration,' and 'dental implants'. The inclusion criteria were clinical studies that evaluated the implant placement, complications, and osseointegration results in patients with osteoporosis; literature reviews and clinical studies addressing the outcome were considered; and articles written in English and published since 2000.

View Article and Find Full Text PDF

Over-oxidation of surface ruthenium active sites of RuO-based electrocatalysts leads to the formation of soluble high-valent Ru species and subsequent structural collapse of electrocatalysts, which results in their low stability for the acidic oxygen evolution reaction (OER). Herein, a binary RuO/NbO electrocatalyst with abundant and intimate interfaces has been rationally designed and synthesized to enhance its OER activity in acidic electrolyte, delivering a low overpotential of 179 mV at 10 mA cm, a small Tafel slope of 73 mV dec, and a stabilized catalytic durability over a period of 750 h. Extensive experiments have demonstrated that the spillover of active oxygen intermediates from RuO to NbO and the subsequent participation of lattice oxygen of NbO instead of RuO for the acidic OER suppressed the over-oxidation of surface ruthenium species and thereby improved the catalytic stability of the binary electrocatalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!