Relaxor ferroelectrics exhibit a range of interesting material behavior, including high electromechanical response, polarization rotations, as well as temperature and electric field-driven phase transitions. The origin of this unusual functional behavior remains elusive due to limited knowledge on polarization dynamics at the nanoscale. Piezoresponse force microscopy and associated switching spectroscopy provide access to local electromechanical properties on the micro- and nanoscale, which can help to address some of these gaps in our knowledge. However, these techniques are inherently prone to artefacts caused by signal contributions emanating from electrostatic interactions between tip and sample. Understanding functional behavior of complex, disordered systems like relaxor materials with unknown electromechanical properties therefore requires a technique that allows distinguishing between electromechanical and electrostatic response. Here, contact Kelvin probe force microscopy (cKPFM) is used to gain insight into the evolution of local electromechanical and capacitive properties of a representative relaxor material lead lanthanum zirconate across the phase transition from a ferroelectric to relaxor state. The obtained multidimensional data set was processed using an unsupervised machine learning algorithm to detect variations in functional response across the probed area and temperature range. Further analysis showed the formation of two separate cKPFM response bands below 50 °C, providing evidence for polarization switching. At higher temperatures only one band is observed, indicating an electrostatic origin of the measured response. In addition, the junction potential difference, which was extracted from the cKPFM data, becomes independent of the temperature in the relaxor state. The combination of this multidimensional voltage spectroscopy technique and machine learning allows to identify the origin of the measured functional response and to decouple ferroelectric from electrostatic phenomena necessary to understand the functional behavior of complex, disordered systems like relaxor materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b15872DOI Listing

Publication Analysis

Top Keywords

functional response
12
force microscopy
12
machine learning
12
functional behavior
12
phase transition
8
kelvin probe
8
probe force
8
local electromechanical
8
electromechanical properties
8
behavior complex
8

Similar Publications

Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.

View Article and Find Full Text PDF

Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.

View Article and Find Full Text PDF

Objective: Loss of function of the phospholipid scramblase (PLS) TMEM16F results in Scott Syndrome, a hereditary bleeding disorder generally attributed to intrinsic platelet dysfunction. The role of TMEM16F in endothelial cells, however, is not well understood. We sought to test the hypothesis that endothelial TMEM16F contributes to hemostasis by measuring bleeding time and venous clotting in endothelial-specific knockout (ECKO) mice.

View Article and Find Full Text PDF

: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.

View Article and Find Full Text PDF

: This study aimed to explore how the microarchitectural features of lacunae and perilacunar zones impact the biomechanics of microdamage accumulation in cortical bone, crucial for understanding bone disorders' pathogenesis and developing preventive measures. : Utilizing the phase field finite element method, the study analyzed three bone unit models with varying microarchitecture: one without lacunae, one with lacunae and one including perilacunar zones, to assess their effects on cortical bone's biomechanical properties. : The presence of lacunae was found to increase microcrack initiation risk, acting as nucleation points and accelerating microcrack propagation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!