3d-Metal Catalyzed N- and C-Alkylation Reactions via Borrowing Hydrogen or Hydrogen Autotransfer.

Chem Rev

Inorganic Chemistry II - Catalyst Design , University of Bayreuth, 95440 Bayreuth , Germany.

Published: February 2019

The conservation of our element resources is a fundamental challenge of mankind. The development of alcohol refunctionalization reactions is a possible fossil carbon conservation strategy since alcohols can be obtained from indigestible and abundantly available biomass. The conservation of our rare noble metals, frequently used in key technologies such as catalysis, might be feasible by replacing them with highly abundant metals. The alkylation of amines by alcohols and related C-C coupling reactions are early examples of alcohol refunctionalization reactions. These reactions follow mostly the borrowing hydrogen or hydrogen autotransfer catalysis concept, and many 3d-metal catalysts have been disclosed in recent years. In this review, we summarize the progress made in developing Cu, Ni, Co, Fe, and Mn catalysts for C-N and C-C bond formation reactions with alcohols and amines using the borrowing hydrogen or hydrogen autotransfer concept. We expect that the findings in this field will inspire others to develop new efficient and selective earth-abundant metal catalysts for borrowing hydrogen or hydrogen autotransfer applications or to develop novel alcohol refunctionalization reactions that can be mediated by such metals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.8b00306DOI Listing

Publication Analysis

Top Keywords

borrowing hydrogen
16
hydrogen hydrogen
16
hydrogen autotransfer
16
alcohol refunctionalization
12
refunctionalization reactions
12
hydrogen
8
reactions
7
3d-metal catalyzed
4
catalyzed c-alkylation
4
c-alkylation reactions
4

Similar Publications

Hydrogen-Borrowing-Based Methods for the Construction of Quaternary Stereocentres.

Angew Chem Int Ed Engl

January 2025

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.

Compounds containing quaternary stereocentres are a valuable motif in biologically active compounds. Herein we present our strategy to utilise the hydrogen borrowing manifold to access α-quaternary ketones via a tandem acceptorless dehydrogenation-cyclisation cascade. This new application of the methodology results in the formation of five- and six-membered carbocycles with a high degree of diastereoselectivity.

View Article and Find Full Text PDF

An overview of palladium-catalyzed -alkylation reactions.

Org Biomol Chem

January 2025

Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala 686 560, India.

-Alkylation of amines is a vital reaction in the synthesis of numerous bioactive compounds and materials. Among transition metals, palladium has emerged as a particularly effective catalyst for these transformations. The unique advantages of palladium arise from its superior catalytic efficiency, ability to operate under mild conditions, high selectivity and recyclability.

View Article and Find Full Text PDF

An Earth-abundant Mn-PNP pincer complex-catalyzed terpenylation of cyclic and acyclic ketones and secondary alcohol 1-phenylethanol using isoprenoid derivatives prenol, nerol, phytol, solanesol, and E-farnesol as allyl surrogates is reported. The C-C coupling reactions are green and atom-economic, proceeding via dehydrogenation of alcohols following a hydrogen autotransfer methodology aided by metal-ligand cooperation.

View Article and Find Full Text PDF

Stereodivergent assembly of δ-valerolactones with an azaarene-containing quaternary stereocenter enabled by Cu/Ru relay catalysis.

Chem Sci

January 2025

Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China

Developing methodologies for the expedient construction of biologically important δ-valerolactones bearing a privileged azaarene moiety and a sterically congested all-carbon quaternary stereocenter is important and full of challenges. We present herein a novel multicatalytic strategy for the stereodivergent synthesis of highly functionalized chiral δ-valerolactones bearing 1,4-nonadjacent quaternary/tertiary stereocenters by orthogonally merging borrowing hydrogen and Michael addition between α-azaaryl acetates and allylic alcohols followed by lactonization in a one-pot manner. Enabled by Cu/Ru relay catalysis, this cascade protocol offers the advantages of atom/step economy, redox-neutrality, mild reaction conditions, and broad substrate tolerance.

View Article and Find Full Text PDF

Remote C-H bond cooperation strategy enabled silver catalyzed borrowing hydrogen reactions.

Chem Sci

December 2024

School of Materials Science and Engineering, PCFM Lab, the Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University Guangzhou 510006 P. R. China

Metal-ligand cooperation (MLC) is an essential strategy in transition metal catalysis. Traditional NH-based and OH-based MLC catalysts, as well as the later developed (de)aromatization strategy, have been widely applied in atom-economic borrowing hydrogen/hydrogen auto-transfer (BH/HA) reactions. However, these conventional MLC approaches are challenging for low-coordination and low-activity coinage metal complexes, arising from the instability during (de)protonation on the coordination atom, the constraint in linear coordination, and possible poisoning due to extra functional sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!