Role of hypothalamic tanycytes in nutrient sensing and energy balance.

Proc Nutr Soc

School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre,Nottingham NG7 2UH,UK.

Published: August 2019

Animal models are valuable for the study of complex behaviours and physiology such as the control of appetite because genetic, pharmacological and surgical approaches allow the investigation of underlying mechanisms. However, the majority of such studies are carried out in just two species, laboratory mice and rats. These conventional laboratory species have been intensely selected for high growth rate and fecundity, and have a high metabolic rate and short lifespan. These aspects limit their translational relevance for human appetite control. This review will consider the value of studies carried out in a seasonal species, the Siberian hamster, which shows natural photoperiod-regulated annual cycles in appetite, growth and fattening. Such studies reveal that this long-term control is not simply an adjustment of the known hypothalamic neuronal systems that control hunger and satiety in the short term. Long-term cyclicity is probably driven by hypothalamic tanycytes, glial cells that line the ventricular walls of the hypothalamus. These unique cells sense nutrients and metabolic hormones, integrate seasonal signals and effect plasticity of surrounding neural circuits through their function as a stem cell niche in the adult. Studies of glial cell function in the hypothalamus offer new potential for identifying central targets for appetite and body weight control amenable to dietary or pharmacological manipulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398574PMC
http://dx.doi.org/10.1017/S0029665118002665DOI Listing

Publication Analysis

Top Keywords

hypothalamic tanycytes
8
studies carried
8
control
5
role hypothalamic
4
tanycytes nutrient
4
nutrient sensing
4
sensing energy
4
energy balance
4
balance animal
4
animal models
4

Similar Publications

Article Synopsis
  • Biological aging involves a gradual loss of homeostasis in molecular and cellular functions, particularly in the brain, which contains diverse cell types that differ in their aging resilience.
  • This study offers an extensive single-cell RNA sequencing dataset of approximately 1.2 million transcriptomes from brain cells in young and aged mice, identifying 847 cell clusters and 14 age-biased clusters predominantly involving glial types.
  • Key findings reveal specific gene expression changes with aging, including decreased neuronal function genes and increased immune-related genes, particularly in cells around the third ventricle of the hypothalamus, suggesting its critical role in the aging process of the mouse brain.
View Article and Find Full Text PDF

Although the Djungarian hamster (Phodopus sungorus) is a seasonality model, it presents substantial variability in winter acclimation. In response to short photoperiod, some individuals express a suite of winter traits such as low body mass, regressed gonads, white fur, and daily torpor, while others develop only some adjustments or maintain a summer phenotype. Despite comprehensive research, the mechanisms underlying polymorphism of winter phenotype are still unknown.

View Article and Find Full Text PDF

Hypothalamic tanycytes internalize ghrelin from the cerebrospinal fluid: Molecular mechanisms and functional implications.

Mol Metab

December 2024

Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden. Electronic address:

Objective: The peptide hormone ghrelin exerts potent effects in the brain, where its receptor is highly expressed. Here, we investigated the role of hypothalamic tanycytes in transporting ghrelin across the blood-cerebrospinal fluid (CSF) interface.

Methods: We investigated the internalization and transport of fluorescent ghrelin (Fr-ghrelin) in primary cultures of rat hypothalamic tanycytes, mouse hypothalamic explants, and mice.

View Article and Find Full Text PDF

Tanycytes from a bird's eye view: gene expression profiling of the tanycytic region under different seasonal states in the Svalbard ptarmigan.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

September 2024

Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway.

In mammals and birds, tanycytes are known to regulate thyroid hormone conversion, and this process is central to the control of seasonal reproduction. In mammals, this cell type is also implicated in retinoic acid signalling, neurogenesis, and nutritional gatekeeping, all of which have been linked to hypothalamic regulation of energy metabolism. Less is known about these potential wider roles of tanycytes in birds.

View Article and Find Full Text PDF

ESCHR: a hyperparameter-randomized ensemble approach for robust clustering across diverse datasets.

Genome Biol

September 2024

Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, 22902, USA.

Clustering is widely used for single-cell analysis, but current methods are limited in accuracy, robustness, ease of use, and interpretability. To address these limitations, we developed an ensemble clustering method that outperforms other methods at hard clustering without the need for hyperparameter tuning. It also performs soft clustering to characterize continuum-like regions and quantify clustering uncertainty, demonstrated here by mapping the connectivity and intermediate transitions between MNIST handwritten digits and between hypothalamic tanycyte subpopulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!