Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Uridine was conjugated with fatty acids to improve the drug lipophilicity and the interaction with phospholipid bilayers.
Methods: The esterification reaction using carbodiimides compounds as coupling agents and a nucleophilic catalyst allowed us to synthesize tri-acyl ester derivatives of uridine with fatty acids. Analysis of molecular interactions between these tri-acyl ester derivatives and l-α-dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV) - as a mammalian cell membrane model - have been performed by differential scanning calorimetry (DSC).
Key Findings: The DSC thermograms suggest that nucleoside and uridine triacetate softly interact with phospholipidic multilamellar vesicles which are predominantly located between the polar phase, whereas the tri-acyl ester derivatives with fatty acids (myristic and stearic acids) present a strongly interaction with the DMPC bilayer due to the nucleoside and aliphatic chains parts which are oriented towards the polar and lipophilic phases of the phospholipidic bilayer, respectively. However, the effects caused by the tri-myristoyl uridine and tri-stearoyl uridine are different.
Conclusions: We show how the structural changes of uridine modulate the calorimetric behaviour of DMPC shedding light on their affinity with the phospholipidic biomembrane model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jphp.13038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!