There is increasing evidence that stress during development can affect adult-life health status and longevity. In the present study, we examined life span (LS), fly weight, fecundity and expression levels of longevity-associated genes (Hsp70, InR, dSir2, dTOR and dFOXO) in adult Drosophila melanogaster flies reared in normal [low density (LD), ~ 300-400 eggs per jar] or crowded [high density (HD), more than 3000 eggs per jar] conditions by using the order (day) of emergence as an index of the developmental duration (HD1-5 groups). Developmental time showed a significant trend to increase while weight showed a significant trend to decrease with increasing the timing of emergence. In both males and females eclosed during first 2 days in HD conditions (HD1 and HD2 groups), both mean and maximum LSs were significantly increased in comparison to LD group. In males, mean LS was increased by 24.0% and 23.5% in HD1 and HD2 groups, respectively. In females, corresponding increments in mean LS were 23.8% (HD1 group) and 29.3% (HD2 group). In HD groups, a strong negative association with developmental time has been found for both male and female mean and male maximum LSs; no association with growth rate was observed for female maximum LS. The female reproductive activity (fecundity) tended to decrease with subsequent days of eclosion. In HD groups, the levels of expression of all studied longevity-associated genes tended to increase with the timing of eclosion in males; no differences were observed in females. On the basis of findings obtained, it can be assumed that the development in conditions of larval overpopulation (if not too extended) could trigger hormetic response thereby extending the longevity. Further studies are, however, needed to confirm this assumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10522-018-9786-0 | DOI Listing |
Curr Opin Insect Sci
December 2024
Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile; Instituto de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile. Electronic address:
The circadian rhythm of adult emergence (aka eclosion) of the fruit fly Drosophila is a classic behavioural read-out that served in the first characterisation of the key features of circadian clocks and was also used for the identification of the first clock genes. Rhythmic eclosion requires the central clock in the brain, as well as a peripheral clock in the steroidogenic prothoracic gland. Here, we review recent findings on the timing and neuroendocrine coupling mechanisms of the two clocks.
View Article and Find Full Text PDFJ Biol Rhythms
December 2024
Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
Mating success depends on many factors, but first of all, a male and a female need to meet at the same place and time. The circadian clock is an endogenous system regulating activity and sex-related behaviors in animals. We studied bumble bees () in which the influence of circadian rhythms on sexual behavior has been little explored.
View Article and Find Full Text PDFInsect Mol Biol
February 2025
Department of Biology, Tufts University, Medford, Massachusetts, USA.
The European corn borer (Ostrinia nubilalis) is an agricultural pest and burgeoning model for research on speciation, seasonal adaptation and insect resistance management. Although previous work in O. nubilalis has identified genes associated with differences in life cycle, reproduction, and resistance to Bt toxins, the general lack of a robust gene-editing protocol for O.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
Department of Zoology, Stockholm University, Stockholm 10691, Sweden.
Winter diapause in insects is commonly terminated through cold exposure, which, like vernalization in plants, prevents development before spring arrives. Currently, quantitative understanding of the temperature dependence of diapause termination is limited, likely because diapause phenotypes are generally cryptic to human eyes. We introduce a methodology to tackle this challenge.
View Article and Find Full Text PDFJ Evol Biol
August 2024
Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, United States.
Elevated temperature often has life stage-specific effects on ectotherms because thermal tolerance varies throughout ontogeny. Impacts of elevated temperature may extend beyond the exposed life stage if developmental plasticity causes early exposure to carry-over or if exposure at multiple life stages cumulatively produces effects. Reproductive traits may be sensitive to different thermal environments experienced during development, but such effects have not been comprehensively measured in Lepidoptera.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!