Hyperglycemia-induced inflammation can greatly increase the risk of periodontal disease in people with diabetes. Low-level laser irradiation (LLLI) has been used for wound healing and anti-inflammation in many cases, and LLLI is known to inhibit the lipopolysaccharide (LPS)-stimulated inflammatory response. However, the therapeutic effect of LLLI in diabetes patients with periodontitis remains unknown. In this study, we cultured human gingival fibroblasts (HGFs) in high-glucose medium (35 mM) to mimic a hyperglycemic environment, and then measured the anti-inflammatory effect of LLLI by assessing the expression of pro-inflammatory genes including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 by quantitative real-time polymerase chain reaction. The results demonstrated no significant inflammatory response in HGFs cultured in mannitol medium and in those treated only with LLLI. However, HGFs cultured only in high-glucose medium showed significantly higher expression of pro-inflammatory cytokine than in those treated together with LLLI. We then observed that LLLI reduced the expression of pro-inflammatory cytokines in HGFs cultured in high-glucose medium by modulating cAMP signaling. We also investigated whether antioxidant (vitamin C) treatment reduced the inflammatory effect of oxidative stress in HGFs cultured in high-glucose medium but found no additive effect upon co-treatment with LLLI, suggesting that LLLI may activate cAMP signaling, but not reactive oxygen species (ROS) signaling, to reduce the high glucose-induced inflammation. In conclusion, LLLI may have an anti-inflammatory effect on HGFs in a high glucose environment and may benefit the treatment of periodontal disease in diabetes patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10103-018-2675-6 | DOI Listing |
Clin Proteomics
December 2024
Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Background: The therapeutic potential of mesenchymal stem cells (MSCs) may be partly attributed to their secretion growth factors, cytokines and chemokines. In various preclinical studies, the use of MSC-conditioned media (CM) has demonstrated promising potential for promoting vascular repair.
Methods: To gain a comprehensive understanding of the variations in conditioned media derived from different sources of mesenchymal stem cells (MSCs) including umbilical cord, adipose and bone marrow, we investigated their reparative effects on human umbilical vein endothelial cells (HUVECs) subjected to damage induced by high glucose.
Diabetes Metab J
December 2024
Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.
Background: Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.
View Article and Find Full Text PDFMol Med
December 2024
Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
Background: Gestational diabetes mellitus (GDM) has been associated with several fetal complications, such as macrosomia and fetal growth restriction (FGR). Infants from GDM associated FGR are at increased risk for adult-onset obesity and associated metabolic disorders. However, the underlying mechanisms of GDM associated FGR remain to be explored.
View Article and Find Full Text PDFmSphere
December 2024
School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom.
Mathematical models can provide insights into complex interactions and dynamics within microbial communities to complement and extend experimental laboratory approaches. For dental biofilms, they can give a basis for evaluating biofilm growth or the transition from health to disease. We have developed mathematical models to simulate the transition toward a cariogenic microbial biofilm, modeled as the overgrowth of within a five-species dental community.
View Article and Find Full Text PDFExp Eye Res
November 2024
Rutgers, The State University of New Jersey, Department of Biomedical Engineering, USA. Electronic address:
Diabetic retinopathy is a leading cause of vision loss in working adults, with disproportionate impact on women with lowered estrogen. Sex hormones and their receptors are significant to neuroprotection of the inner blood-retinal barrier (iBRB), a tissue that regulates transport across the neuroretina and vasculature. Moreover, high glucose levels in diabetes lead to the formation of advanced glycation end products (AGEs), which promote inflammation and iBRB breakdown to result in vision loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!