Recent advances in genomic sequencing technology and computational assembly methods have allowed scientists to improve reference genome assemblies in terms of contiguity and composition. EquCab2, a reference genome for the domestic horse, was released in 2007. Although of equal or better quality compared to other first-generation Sanger assemblies, it had many of the shortcomings common to them. In 2014, the equine genomics research community began a project to improve the reference sequence for the horse, building upon the solid foundation of EquCab2 and incorporating new short-read data, long-read data, and proximity ligation data. Here, we present EquCab3. The count of non-N bases in the incorporated chromosomes is improved from 2.33 Gb in EquCab2 to 2.41 Gb in EquCab3. Contiguity has also been improved nearly 40-fold with a contig N50 of 4.5 Mb and scaffold contiguity enhanced to where all but one of the 32 chromosomes is comprised of a single scaffold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240028PMC
http://dx.doi.org/10.1038/s42003-018-0199-zDOI Listing

Publication Analysis

Top Keywords

reference genome
12
genome domestic
8
domestic horse
8
contiguity composition
8
improve reference
8
improved reference
4
horse increases
4
increases assembly
4
contiguity
4
assembly contiguity
4

Similar Publications

A cost-effective oligo-based barcode system for chromosome identification in longan and lychee.

Hortic Res

January 2025

Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Mazhang District, Zhanjiang 524091, China.

Oligonucleotide (Oligo)-based fluorescence hybridization (FISH) represents a highly effective methodology for identifying plant chromosomes. Longan is a commercially significant fruit species, yet lacking basic chromosomal markers has hindered its cytogenetic research. In this study, we developed a cost-effective oligo-based system for distinguishing chromosomes of longan ( Lour.

View Article and Find Full Text PDF

The Darwin Tree of Life (DToL) project aims to generate high-quality reference genomes for all eukaryotic organisms in Britain and Ireland. At the time of writing, PacBio HiFi reads are generated for all samples using the Sequel IIe systems by the Wellcome Sanger Institute's Scientific Operations teams, however we expect lessons from this work to apply directly to the Revio system too, as core principles of SMRT sequencing remain the same. We observed that HiFi yield is highly variable for DToL samples.

View Article and Find Full Text PDF

Background: Leptospirosis is an acute zoonotic disease caused by pathogenic , primarily transmitted to humans through contact with water or soil contaminated by the bacteria. It is globally distributed, with heightened prevalence in tropical regions. While prior studies have examined the pathophysiology, epidemiology, and risk factors of leptospirosis, few have explored trends and emerging topics in the field.

View Article and Find Full Text PDF

Comprehensive genomic analysis and selection signature detection in endangered Beigang pigs using whole-genome sequencing data.

Anim Genet

February 2025

Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China.

The Beigang pig was recently identified as one of the endangered breeds during a Chinese indigenous pig genetic resource survey. The Beigang breed is notable for its remarkable roughage tolerance and high reproductive capacity according to historical records. Morphologically, the Beigang pig resembles many indigenous pigs in eastern China, especially in its large ears.

View Article and Find Full Text PDF

Spatial deconvolution from bulk DNA methylation profiles determines intratumoral epigenetic heterogeneity.

Cell Biosci

January 2025

Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China.

Background: Intratumoral heterogeneity emerges from accumulating genetic and epigenetic changes during tumorigenesis, which may contribute to therapeutic failure and drug resistance. However, the lack of a quick and convenient approach to determine the intratumoral epigenetic heterogeneity (eITH) limit the application of eITH in clinical settings. Here, we aimed to develop a tool that can evaluate the eITH using the DNA methylation profiles from bulk tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!