Major tumor suppressor and transcription factor p53 coordinates expression of many genes hence affecting critical cellular functions including cell cycle, senescence, and apoptosis. The NR4A family of orphan receptors (NR4A1-3) belongs to the superfamily of nuclear receptors. They regulate genes involved in proliferation, cell migration, and apoptosis. In this study, we report an identification of NR4A3 as a direct transcriptional target of p53. Using various techniques, we showed that p53 directly bound the promoter of NR4A3 gene and induced its transcription. Functionally, over-expression of NR4A3 attenuated proliferation of cancer cells and promoted apoptosis by augmenting the expression of pro-apoptotic genes, PUMA and Bax. Knockdown of NR4A3 reversed these phenotypes. Importantly, NR4A3 exhibited tumor suppressive functions both in p53-dependent and independent manner. In addition, NR4A3 physically interacted with an anti-apoptotic Bcl-2 protein hence sequestering it from blunting apoptosis. These observations were corroborated by the bioinformatics analysis, which demonstrated a correlation between high levels of NR4A3 expression and better survival of breast and lung cancer patients. Collectively, our studies revealed a novel transcriptional target of p53, NR4A3, which triggers apoptosis and thus likely has a tumor suppressive role in breast and lung cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41388-018-0566-8 | DOI Listing |
T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.
Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.
Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.
Int J Gynecol Pathol
January 2025
Diagnostic Pathology, National Cancer Center Hospital.
Vulvar adenocarcinoma of the intestinal type (VAIt) is a rare subtype of primary vulvar carcinoma, with ∼30 cases documented in the English literature. This study presents 2 new cases of HPV-independent VAIt with lymph node metastasis and discusses their clinical presentation, histopathologic features, and whole exome sequencing (WES) analysis. Both cases exhibited histologic features consistent with VAIt, including tubular, papillary, and mucinous carcinoma components.
View Article and Find Full Text PDFInt J Gynecol Pathol
January 2025
Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
The term verruciform acanthotic vulvar intraepithelial neoplasia (vaVIN) was coined to describe HPV-independent p53-wildtype lesions with characteristic clinicopathologic characteristics and association with vulvar squamous cell carcinoma (vSCC). We aimed to expand on the molecular landscape of vaVIN using comprehensive sequencing and copy number variation profiling. vaVIN diagnosis in institutional cases was confirmed by a second review, plus negative p16 and wildtype p53 by immunohistochemistry.
View Article and Find Full Text PDFIntegration of DNA replication with DNA repair, cell cycle progression, and other biological processes is crucial for preserving genome stability and fundamentally important for all life. Ataxia-telangiectasia mutated and RAD3-related (ATR) and its partner ATR-interacting protein (ATRIP) function as a critical proximal sensor and transducer of the DNA Damage Response (DDR). Several ATR substrates, including p53 and CHK1, are crucial for coordination of cell cycle phase transitions, transcription, and DNA repair when cells sustain DNA damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!