A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tracking job and housing dynamics with smartcard data. | LitMetric

Tracking job and housing dynamics with smartcard data.

Proc Natl Acad Sci U S A

School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.

Published: December 2018

Residential locations, the jobs-housing relationship, and commuting patterns are key elements to understand urban spatial structure and how city dwellers live. Their successive interaction is important for various fields including urban planning, transport, intraurban migration studies, and social science. However, understanding of the long-term trajectories of workplace and home location, and the resulting commuting patterns, is still limited due to lack of year-to-year data tracking individual behavior. With a 7-y transit smartcard dataset, this paper traces individual trajectories of residences and workplaces. Based on in-metro travel times before and after job and/or home moves, we find that 45 min is an inflection point where the behavioral preference changes. Commuters whose travel time exceeds the point prefer to shorten commutes via moves, while others with shorter commutes tend to increase travel time for better jobs and/or residences. Moreover, we capture four mobility groups: home mover, job hopper, job-and-residence switcher, and stayer. This paper studies how these groups trade off travel time and housing expenditure with their job and housing patterns. Stayers with high job and housing stability tend to be home (apartment unit) owners subject to middle- to high-income groups. Home movers work at places similar to stayers, while they may upgrade from tenancy to ownership. Switchers increase commute time as well as housing expenditure via job and home moves, as they pay for better residences and work farther from home. Job hoppers mainly reside in the suburbs, suffer from long commutes, change jobs frequently, and are likely to be low-income migrants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294921PMC
http://dx.doi.org/10.1073/pnas.1815928115DOI Listing

Publication Analysis

Top Keywords

job housing
12
travel time
12
commuting patterns
8
housing expenditure
8
expenditure job
8
job
6
housing
5
tracking job
4
housing dynamics
4
dynamics smartcard
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!