Spermatogonial stem cells (SSCs) are unipotent germ cells that are at the foundation of spermatogenesis and male fertility. However, the underlying molecular mechanisms governing SSC stemness and growth properties remain elusive. We have recently identified chromodomain helicase/ATPase DNA binding protein 1-like (Chd1l) as a novel regulator for SSC survival and self-renewal, but how these functions are controlled by Chd1l remains to be resolved. Here, we applied high-throughput small RNA sequencing to uncover the microRNA (miRNA) expression profiles controlled by Chd1l and showed that the expression levels of 124 miRNA transcripts were differentially regulated by Chd1l in SSCs. KEGG pathway analysis shows that the miRNAs that are differentially expressed upon Chd1l repression are significantly enriched in the pathways associated with stem cell pluripotency and proliferation. As a proof of concept, we demonstrate that one of the most highly upregulated miRNAs, miR-486, controls SSC stemness gene expression and growth properties. The matrix metalloproteinase 2 (MMP2) gene has been identified as a novel miR-486 target gene in the context of SSC stemness gene regulation and growth properties. Data from cotransfection experiments showed that Chd1l, miR-486, and MMP2 work in concert in regulating SSC stemness gene expression and growth properties. Finally, our data also revealed that MMP2 regulates SSC stemness gene expression and growth properties through activating β-catenin signaling by cleaving N-cadherin and increasing β-catenin nuclear translocation. Our data demonstrate that Chd1l-miR-486-MMP2 is a novel regulatory axis governing SSC stemness gene expression and growth properties, offering a novel therapeutic opportunity for treating male infertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362313 | PMC |
http://dx.doi.org/10.1128/MCB.00357-18 | DOI Listing |
Int J Mol Sci
August 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
Spermatogonial stem cells (SSCs) possess the characteristics of self-renewal and differentiation, as well as the ability to generate functional sperm. Their unique stemness has broad applications in male infertility treatment and species preservation. In rodents, research on SSCs has been widely reported, but progress is slow in large livestock such as cattle and pigs due to long growth cycles, difficult proliferation in vitro, and significant species differences.
View Article and Find Full Text PDFStem Cell Res Ther
April 2024
Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India.
Background: Spermatogonial stem cells (SSCs) were considered to be stem cells with limited potencies due to their existence in adult organisms. However, the production of spermatogonial stem cell colonies with broader differentiation capabilities in primary germ cell cultures from mice of select genetic backgrounds (C57BL6/Tg14, ddY, FVB and 129/Ola) indicated that SSCs from these strains were pluripotent.
Methods: We established primary cultures of SSCs from neonatal and adult Swiss 3T3 Albino mice.
Cells
April 2022
Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), São Paulo 18618-689, Brazil.
Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GDNF Family Receptor α1-GFRα1) are well known to mediate spermatogonial stem cell (SSC) proliferation and survival in mammalian testes. In nonmammalian species, Gdnf and Gfrα1 orthologs have been found but their functions remain poorly investigated in the testes. Considering this background, this study aimed to understand the roles of the Gdnf-Gfrα1 signaling pathway in zebrafish testes by combining in vivo, in silico and ex vivo approaches.
View Article and Find Full Text PDFFront Cell Dev Biol
March 2022
State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Bone exhibits remarkable self-repair ability without fibrous scars. It is believed that the robust regenerative capacity comes from tissue-resident stem cells, such as skeletal stem cells (SSCs). Roughly, SSC has two niches: bone marrow (BM) and periosteum.
View Article and Find Full Text PDFJ Assist Reprod Genet
December 2021
Indian council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
Purpose: Spermatogonial stem cells (SSCs) are the source for the mature male gamete. SSC technology in humans is mainly focusing on preserving fertility in cancer patients. Whereas in livestock, it is used for mining the factors associated with male fertility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!