AI Article Synopsis

  • The text discusses a dangerous gut pathogen that poses risks in healthcare settings and highlights the need for new antibiotics due to limited treatment options and resistance issues.
  • ACX-362E is introduced as a promising new drug in development that targets DNA polymerase specifically in Gram-positive bacteria, showing effectiveness in laboratory and animal studies.
  • The research reveals how ACX-362E impacts gene expression, particularly near the origin of replication, indicating that the location of genes in the genome influences how bacteria respond to treatments that inhibit DNA replication.

Article Abstract

is a potentially lethal gut pathogen that causes nosocomial and community-acquired infections. Limited treatment options and reports of reduced susceptibility to current treatment emphasize the necessity for novel antimicrobials. The DNA polymerase of Gram-positive organisms is an attractive target for the development of antimicrobials. ACX-362E [-(3,4-dichlorobenzyl)-7-(2-[1-morpholinyl]ethyl)guanine; MorE-DCBG] is a DNA polymerase inhibitor in preclinical development as a novel therapeutic against infection. This synthetic purine shows preferential activity against PolC over those of other organisms and is effective in an animal model of infection. In this study, we have determined its efficacy against a large collection of clinical isolates. At concentrations below the MIC, the presumed slowing (or stalling) of replication forks due to ACX-362E leads to a growth defect. We have determined the transcriptional response of to replication inhibition and observed an overrepresentation of upregulated genes near the origin of replication in the presence of PolC inhibitors, but not when cells were subjected to subinhibitory concentrations of other antibiotics. This phenomenon can be explained by a gene dosage shift, as we observed a concomitant increase in the ratio between origin-proximal and terminus-proximal gene copy number upon exposure to PolC inhibitors. Moreover, we show that certain genes differentially regulated under PolC inhibition are controlled by the origin-proximal general stress response regulator sigma factor B. Together, these data suggest that genome location both directly and indirectly determines the transcriptional response to replication inhibition in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355584PMC
http://dx.doi.org/10.1128/AAC.01363-18DOI Listing

Publication Analysis

Top Keywords

transcriptional response
12
genome location
8
polc inhibition
8
dna polymerase
8
response replication
8
replication inhibition
8
polc inhibitors
8
polc
5
location dictates
4
dictates transcriptional
4

Similar Publications

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

The reddish apocarotenoid β-citraurin, produced by CAROTENOID CLEAVAGE DIOXYGENASE 4b (CsCCD4b), is responsible for peel reddening in citrus (Citrus spp.). Ethylene induces the characteristic red color of citrus peel, but the underlying molecular mechanism remains largely unclear.

View Article and Find Full Text PDF

Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.

View Article and Find Full Text PDF

Endosomes play a pivotal role in cellular biology, orchestrating processes such as endocytosis, molecular trafficking, signal transduction, and recycling of cellular materials. This study aims to construct an endosome-related gene (ERG)-derived risk signature for breast cancer prognosis. Transcriptomic and clinical data were retrieved from The Cancer Genome Atlas and the University of California Santa Cruz databases to build and validate the model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!