Discovery and optimization of pyrazole amides as antagonists of CCR1.

Bioorg Med Chem Lett

Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA.

Published: February 2019

A HTS screen for CCR1 antagonists afforded a novel sub-micromolar hit 5 containing a pyrazole core. In this report the design, optimization, and SAR of novel CCR1 antagonists based on a pyrazole core motif is presented. Optimization led to the advanced candidate compounds (S)-16q and (S)-16r with 250-fold improved CCR1 potency, excellent off-target selectivity and attractive drug-like properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2018.11.015DOI Listing

Publication Analysis

Top Keywords

ccr1 antagonists
8
pyrazole core
8
discovery optimization
4
optimization pyrazole
4
pyrazole amides
4
amides antagonists
4
ccr1
4
antagonists ccr1
4
ccr1 hts
4
hts screen
4

Similar Publications

HGF-DPSCs ameliorate asthma by regulating CCR1 Th2 cells responses in mice pulmonary mucosa.

Cytotherapy

February 2025

Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China. Electronic address:

Asthma, a prevalent allergic disease affecting approximately 300 million individuals globally, remains a significant public health challenge. Mesenchymal stromal cells (MSCs) and hepatocyte growth factor (HGF), both recognized for their immunomodulatory properties, hold therapeutic potential for asthma. However, their precise mechanisms remain underexplored.

View Article and Find Full Text PDF

Blocking the CCL5/CCL7-CCR1 axis regulates macrophage polarization through NF-κB pathway to alleviate the progression of osteoarthritis.

Int Immunopharmacol

February 2025

Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China. Electronic address:

Objective: To study the effect of CCR1 and its ligands on macrophage polarization and evaluate its effect on chondrocytes in relieving the progression of osteoarthritis.

Methods: RAW cells were polarized to M1/M2 subtype, and then different concentrations of BX471 were added to selectively inhibit CCR1. The polarization of the cells was detected by RT-qPCR, immunofluorescence and flow cytometry.

View Article and Find Full Text PDF

Myeloid-Derived Suppressor Cell Accumulation Drives Intestinal Fibrosis through mCCL6/hCCL15 Chemokine-Mediated Fibroblast Activation.

Adv Sci (Weinh)

February 2025

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China.

Intestinal fibrosis, a severe complication of Crohn's disease (CD), is linked to chronic inflammation, but the precise mechanism by which immune-driven intestinal inflammation leads to fibrosis development is not fully understood. This study investigates the role of myeloid-derived suppressor cells (MDSCs) in intestinal fibrosis in CD patients and a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse model. Elevated MDSCs are observed in inflamed intestinal tissues prior to fibrosis and their sustained presence in fibrotic tissues of both CD patients and murine models.

View Article and Find Full Text PDF

CCR1 antagonist as a potential modulator of inflammatory, autophagic, and apoptotic markers in spinal cord injury.

Neuropharmacology

February 2025

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy.

Spinal cord injury (SCI) leads to severe and lasting impairments in motor and sensory functions. The intense inflammatory response following SCI is a significant challenge, and autophagy has emerged as a key factor in the recovery process. The C-C chemokine receptor type 1 (CCR1), a G-protein coupled receptor, plays a crucial role in managing the chemokine response under stress.

View Article and Find Full Text PDF
Article Synopsis
  • * CCR1, CCR3, and CCR5 are receptors that enhance NSCLC cells' migration and invasion, making them potential targets for therapy.
  • * This research identified compound 5 as an effective inhibitor of NSCLC cell migration and invasion by binding to these receptors and suppressing key molecular pathways, offering insights for developing new drugs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!