The ammoniacal leaching of surface-coated metals from automobile-discarded ABS plastics followed by their recovery through solvent extraction has been investigated. The leaching of ABS (typically containing 4.1% Cu, 1.3% Ni, and 0.03% Cr) could efficiently dissolve the ammine complexes of Cu and Ni, leaving Cr unleached as fine particles. The optimization studies for achieving the maximum efficiency revealed that the leaching of metal ions in different ammoniacal solutions follows the order CO > Cl > SO. The leaching carried out in a carbonate medium by maintaining the total NH concentration 5.0 M at a NHOH/(NH)CO ratio of 4:1, pulp density of 200 g/L, agitation speed of 400 rpm, temperature of 20 °C, and time of 120 min yielded the optimum efficiency of >99% Cu and Ni (i.e., 8.14 g/L and 2.57 g/L, respectively, in the leach liquor). Subsequently, the solvent extraction of metals from ammoniacal leach liquor as a function of extractant (LIX 84-I) concentration and organic-to-aqueous (O:A) phase ratio was examined. Based on the extraction data, a three-stage counter-current extraction at O:A = 1:1 was validated using 0.8 M LIX 84-I, yielding the quantitative extraction of both metals into the organic phase. Thereafter, the stripping of metals in acid solutions indicated that 0.5 M HSO could quantitatively strip Ni from the loaded organic phase; however, ∼27% Cu was also co-stripped. The rest of Cu from the Ni-depleted organic phase was separately stripped with 1.0 M HSO that can be directly sent to the electrowinning process. On the other hand, the co-stripped metals from the acidic solution can be easily separated, again using LIX 84-I as the extractant, by adopting the pH-swing method. Finally, a process has been proposed for the hydrometallurgical recovery of surface-coated metals from waste ABS plastics; that does not affect the physicochemical characteristics of the polymer substances for their reuse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2018.09.037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!