Homeotherms maintain their core body temperature within a narrow range by employing multiple redundant mechanisms to control heat production and dissipation. Preoptic area/anterior hypothalamic (PO/AH) neurons receive thermal signals from peripheral and deep-body thermoreceptors as well as hormonal and metabolic signals. A population of PO/AH neurons termed warm-sensitive increase their firing temperature with warming and are considered central thermoreceptors. Electrophysiologic and pharmacologic experiments have provided descriptions of their characteristics and signaling mechanisms. These studies have also allowed insights into the mechanisms by which neurochemicals important in thermoregulation exert their influence. Finally, the cellular mechanism involved in the interactions between thermoregulation and other aspects of homeostasis, such as energy metabolism and osmoregulation, have started to be unraveled.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-444-63912-7.00007-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!