The rising application of informatics and data science tools for studying inorganic crystals and small molecules has revolutionized approaches to materials discovery and driven the development of accurate machine learning structure/property relationships. We discuss how informatics tools can accelerate research, and we present various combinations of workflows, databases, and surrogate models in the literature. This paradigm has been slower to infiltrate the catalysis community due to larger configuration spaces, difficulty in describing necessary calculations, and thermodynamic/kinetic quantities that require many interdependent calculations. We present our own informatics tool that uses dynamic dependency graphs to share, organize, and schedule calculations to enable new, flexible research workflows in surface science. This approach is illustrated for the large-scale screening of intermetallic surfaces for electrochemical catalyst activity. Similar approaches will be important to bring the benefits of informatics and data science to surface science research. Lastly, we provide our perspective on when to use these tools and considerations when creating them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.8b00386 | DOI Listing |
Environ Toxicol Chem
January 2025
School of Environment and Energy, South China University of Technology, Guangzhou, PR China.
As a representative agent of bicyclic antidepressants, venlafaxine (VEN) has become widely used worldwide and is frequently detected in surface waters with concentrations ranging from ng/L to µg/L. To evaluate the toxicological effects of such medications on aquatic species, studies on environmentally relevant concentrations are essential. Zebrafish were used as a model organism to assess growth and development in larvae and examine tissue accumulation, oxidative stress, and DNA methylation in adults.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Culiacán, Culiacán, Sinaloa, México.
Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
The phenomena occurring in a weld seam during advancement of a laser beam over a metallic component are still under dispute. The occurrence and evolution of porosity and the occasional blowout of melt need to be understood. Here, a recently developed X-ray tomoscopy setup is applied, providing one hundred 3D images per second to capture the temporal evolution of the melt pool in an AlSi9Cu3(Fe) die-casting while a laser beam advances.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Earth Sciences, University of Oregon, Eugene, OR 97403.
Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper [Formula: see text]1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, Institut Pierre-Simon Laplace, Université Paris Sciences et Lettres, Paris 75005, France.
The insulative properties of soil organic carbon (SOC) and surface organic layers (moss, lichens, litter) regulate surface-atmosphere energy exchanges in the Arctic through a coupling with soil temperatures. However, a physical description of this process is lacking in many climate models, potentially biasing their high-latitude climate predictions. Using a coupled surface-atmosphere model, we identified a strong feedback loop between soil insulation, surface air temperature, and snowfall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!