A highly efficient and broad light absorber capable of wide-angle absorption in the visible and near infrared range is presented and numerically investigated for energy harvesting in a simple geometry. According to the calculated results, the proposed device has a peak absorption level of about 99.95%. The actual absorption efficiency is 76.35%, which is approaching that of complex multilayer absorbers with 88 layers working in the wavelength range of 300 nm to 2000 nm. The electro-optic material has the potential of shifting the absorption peak position, compensating fabrication errors and thus reducing the fabrication technique difficulties. Also, the high electro-optic tunability can be used for filters, infrared detection, and imaging applications. More directly, the proposed absorber can be potentially deployed in solar cells and solar thermals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267289 | PMC |
http://dx.doi.org/10.3390/ma11112315 | DOI Listing |
ACS Appl Electron Mater
December 2024
Department of Electronics and Computer Science, University of Granada, Granada 18071, Spain.
In the evolution of pervasive electronics, it is imperative to significantly reduce the energy consumption of power systems and embrace sustainable materials and fabrication processes with minimal carbon footprint. Within this context, thermoelectric generators (TEGs) have garnered substantial attention in recent years because of the readily available thermal gradients in the environment, making them a promising energy-harvesting technology. Current commercial room-temperature thermoelectrics are based on scarce, expensive, and/or toxic V-VI chalcogenide materials, which limit their widespread use.
View Article and Find Full Text PDFNeural Netw
December 2024
Deep Mining and Rock Burst Research Branch, Chinese Institute of Coal Science, Qingniangou Road No. 5, Beijing, 100013, China.
The essential of semi-supervised semantic segmentation (SSSS) is to learn more helpful information from unlabeled data, which can be achieved by assigning adequate quality pseudo-labels or managing noisy pseudo-labels during training. However, most relevant state-of-the-art (SOTA) methods are mainly devoted to improving one aspect. By revisiting the representative SSSS methods from a robust learning view, this paper discovers that the appropriate combination of multiple noise-robust methods contributes both to assigning sufficient quality pseudo labels and managing noisy labels.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia. Electronic address:
This study focuses on enhancing solar energy capture efficiency by introducing innovative hybrid nanofluids for use in solar thermal collectors, whose performance largely depends on the absorption properties of the working fluid. The newly developed hybrid nanofluids, MXene/NH2-UiO66 (Zr) (noted as MX/UO66) and MXene/MIL-88B (Fe) (noted as MX/ML88), were synthesized using an in-situ solvothermal method, combining annealed Ti3C2Tx MXenes with water-stable metal-organic frameworks (MOFs). These nanofluids achieved high efficiency at low concentrations, providing both economic and performance benefits.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!