Unmanned aerial vehicles (UAVs) have enormous potential in enabling new applications in various areas, ranging from military, security, medicine, and surveillance to traffic-monitoring applications. Lately, there has been heavy investment in the development of UAVs and multi-UAVs systems that can collaborate and complete missions more efficiently and economically. Emerging technologies such as 4G/5G networks have significant potential on UAVs equipped with cameras, sensors, and GPS receivers in delivering Internet of Things (IoT) services from great heights, creating an airborne domain of the IoT. However, there are many issues to be resolved before the effective use of UAVs can be made, including security, privacy, and management. As such, in this paper we review new UAV application areas enabled by the IoT and 5G technologies, analyze the sensor requirements, and overview solutions for fleet management over aerial-networking, privacy, and security challenges. Finally, we propose a framework that supports and enables these technologies on UAVs. The introduced framework provisions a holistic IoT architecture that enables the protection of UAVs as "flying" things in a collaborative networked environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263805 | PMC |
http://dx.doi.org/10.3390/s18114015 | DOI Listing |
Forensic Sci Int
January 2025
School of Criminal Justice, Faculty of Law, Criminal Justice and Public Administration, University of Lausanne, Switzerland.
The search for missing people is a complex and intensive undertaking. Predictive models (such as RAG mapping and geographic profiling) in combination with drone-mounted technologies can improve these searches by driving down time and monetary costs, gathering new types of data and reducing the need for investigators to expose themselves to dangerous environments. Promising technologies to discover traces of clandestine burials in the landscape are LiDAR, RGB photography, multispectral and hyperspectral imaging, as well as infrared/thermal photography.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
January 2025
School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia.
Techniques for non-invasive sampling of ecophysiological data in wild animals have been developed in response to challenges associated with studying captive animals or using invasive methods. Of these, drones, also known as Unoccupied Aerial Vehicles (UAVs), and their associated sensors, have emerged as a promising tool in the ecophysiology toolkit. In this review, we synthesise research in a scoping review on the use of drones for studying wildlife ecophysiology using the PRISMA-SCr checklist and identify where efforts have been focused and where knowledge gaps remain.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China.
As the Internet of Things (IoT) expands globally, the challenge of signal transmission in remote regions without traditional communication infrastructure becomes prominent. An effective solution involves integrating aerial, terrestrial, and space components to form a Space-Air-Ground Integrated Network (SAGIN). This paper discusses an uplink signal scenario in which various types of data collection sensors as IoT devices use Unmanned Aerial Vehicles (UAVs) as relays to forward signals to low-Earth-orbit satellites.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.
Unmanned aerial vehicles (UAVs) furnished with computational servers enable user equipment (UE) to offload complex computational tasks, thereby addressing the limitations of edge computing in remote or resource-constrained environments. The application of value decomposition algorithms for UAV trajectory planning has drawn considerable research attention. However, existing value decomposition algorithms commonly encounter obstacles in effectively associating local observations with the global state of UAV clusters, which hinders their task-solving capabilities and gives rise to reduced task completion rates and prolonged convergence times.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical Engineering & Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
In mission-critical environments such as industrial and military settings, the use of unmanned vehicles is on the rise. These scenarios typically involve a ground control system (GCS) and nodes such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs). The GCS and nodes exchange different types of information, including control data that direct unmanned vehicle movements and sensor data that capture real-world environmental conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!