β-Cyclodextrin (βCD), the less water soluble of the cyclodextrins, has been used as a capping agent in the preparation of semiconductor nanocrystals or quantum dots (QDs). Nevertheless, no reports have been found in the use of the highly water-soluble polymer of this, prepared by the crosslinking of the βCD units with epichlorohydrin in basic medium (βCDP). This polymer, besides to overcome the low solubility of the βCD, increases the inclusion constant of the guest; two parameters that deserve its use as capping agent, instead of the native cyclodextrin. In the present manuscript, we afforded the in-situ aqueous preparation of cadmium telluride (CdTe) QDs capped with βCDP. The polymer influence on the photoluminescent properties of the nanocrystals was analyzed. The βCDP controls the nanocrystals growth during the Oswald ripening stage. Consequently, the CdTe capped βCDP QDs showed lower Stokes-shift values, higher photoluminescent efficiency, and narrower size distribution than for nanocrystals obtained in the absence of polymer. Transmission electron microscopy (TEM) micrographs and energy dispersive X-ray spectroscopy (EDS) analysis revealed the composition and crystallinity of the CdTe QDs. This βCDP capped CdTe QDs is a potential scaffold for the supramolecular modification of QDs surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267504PMC
http://dx.doi.org/10.3390/nano8110948DOI Listing

Publication Analysis

Top Keywords

cdte qds
12
quantum dots
8
polymer influence
8
capping agent
8
βcdp polymer
8
capped βcdp
8
polymer
6
qds
6
cdte
5
βcdp
5

Similar Publications

This study highlights the aqueous synthesis of CdTe/ZnS core/shell quantum dots (QDs) and their application as fluorescence sensors for detecting critical metabolites, including folic acid, glucose, and vitamin C, in real biological samples. The synthesized QDs exhibit excellent quantum efficiency, stability, and biocompatibility, enhanced by mercaptopropionic acid (MPA) ligands, enabling eco-friendly and accurate sensing. Detection limits of 0.

View Article and Find Full Text PDF

Inhibitory effects of cadmium and hydrophilic cadmium telluride quantum dots on the white rot fungus .

Heliyon

January 2025

Department of Microbiology (Biocenter 1, Viikinkaari 9), Faculty of Agriculture and Forestry, University of Helsinki, Finland.

The white rot fungus was investigated for its ability to decolorize the reactive textile dye Reactive Black 5 (RB5) that was co-exposed to CdCl and quantum dots (QDs) consisting of a CdTe core capped with two different hydrophilic organic ligands (NAC and MPA). Without co-exposure, completely decolorizes RB5 within 9 days. The highest inhibitory effect was found for soluble CdCl with an EC of 583 μg l, followed by MPA-QDs (10,628 μg l) and NAC-QDs (17,575 μg l).

View Article and Find Full Text PDF

DNAzyme-based cascade networks are effective tools to achieve ultrasensitive detection of low-abundance miRNAs. However, their designs are complicated and costly, and the operation is time-consuming. Herein, a novel simple noncascade DNAzyme network is designed and its amplification effect is comparable to or even better than many cascading ones.

View Article and Find Full Text PDF

Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).

View Article and Find Full Text PDF

Low-Toxicity and High-Stability Fluorescence Sensor for the Selective, Rapid, and Visual Detection Tetracycline in Food Samples.

Molecules

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.

With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!