SNPs and Somatic Mutation on Long Non-Coding RNA: New Frontier in the Cancer Studies?

High Throughput

LTTA, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara 70, 44123 Ferrara, Italy.

Published: November 2018

In the last decade, it has been demonstrated that long non-coding RNAs (lncRNAs) are involved in cancer development. The great majority of studies on lncRNAs report alterations, principally on their expression profiles, in several tumor types with respect to the normal tissues of origin. Conversely, since lncRNAs constitute a relatively novel class of RNAs compared to protein-coding transcripts (mRNAs), the landscape of their mutations and variations has not yet been extensively studied. However, in recent years an ever-increasing number of articles have described mutations of lncRNAs. Single-nucleotide polymorphisms (SNPs) that occur within the lncRNA transcripts can affect the structure and function of these RNA molecules, while the presence of a SNP in the promoter region of a lncRNA could alter its expression level. Also, somatic mutations that occur within lncRNAs have been shown to exert important effects in cancer and preliminary data are promising. Overall, the evidence suggests that SNPs and somatic mutation on lncRNAs may play a role in the pathogenesis of cancer, and indicates strong potential for further development of lncRNAs as biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306726PMC
http://dx.doi.org/10.3390/ht7040034DOI Listing

Publication Analysis

Top Keywords

snps somatic
8
somatic mutation
8
long non-coding
8
lncrnas
7
mutation long
4
non-coding rna
4
rna frontier
4
cancer
4
frontier cancer
4
cancer studies?
4

Similar Publications

Background: Identifying markers or genes crucial for growth traits in Zhongwei goats is pivotal for breeding. Pinpointing genetic factors linked to body size gain enhances breeding efficiency and economic value. In this study, we used the MGISEQ-T7 platform to re-sequence 240 Zhongwei goats (133 male; 107 female) belonging to 5 metrics of growth traits at different growth stages (40 days and 6 months, here in after referred to as 40d and 6 m), namely, Body Weight (BW), Body Height (BH), Body Length (BL), Chest Circumference (CC), Tube Circumference (TC) were examined.

View Article and Find Full Text PDF

In monogenic diseases, double mosaic variants of the same gene have rarely been identified. Here, we report the case of triple mosaic variants in PURA, a gene responsible for a neurodevelopmental syndrome (OMIM# 616158). Whole-exome sequencing identified three somatic PURA variants in our case with a similar neurodevelopmental syndrome: NM_005859.

View Article and Find Full Text PDF

Illegal wildlife trade is a growing problem internationally. Poaching of animals not only leads to the extinction of populations and species but also has serious consequences for ecosystems and economies. This study introduces a molecular marker system that authorities can use to detect and substantiate wildlife trafficking.

View Article and Find Full Text PDF

Backtracking Cell Phylogenies in the Human Brain with Somatic Mosaic Variants.

Methods Mol Biol

January 2025

Sorbonne Université, Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.

Somatic mosaic variants, and especially somatic single nucleotide variants (sSNVs), occur in progenitor cells in the developing human brain frequently enough to provide permanent, unique, and cumulative markers of cell divisions and clones. Here, we describe an experimental workflow to perform lineage studies in the human brain using somatic variants. The workflow consists in two major steps: (1) sSNV calling through whole-genome sequencing (WGS) of bulk (non-single-cell) DNA extracted from human fresh-frozen tissue biopsies, and (2) sSNV validation and cell phylogeny deciphering through single nuclei whole-genome amplification (WGA) followed by targeted sequencing of sSNV loci.

View Article and Find Full Text PDF

Constitutively active NOTCH2 signaling is a hallmark in chronic lymphocytic leukemia (CLL). The precise underlying defect remains obscure. Here we show that the mRNA sequence coding for the NOTCH2 negative regulatory region (NRR) is consistently deleted in CLL cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!