Background/aims: Podocytes are dynamic polarized cells on the surface of glomerular capillaries that are an essential part of the glomerular filtration barrier. AMP-activated protein kinase (AMPK), a key regulator of glucose and fatty acid metabolism, plays a major role in obesity and type 2 diabetes. Accumulating evidence suggests that TRPC6 channels are crucial mediators of calcium transport in podocytes and are involved in regulating glomerular filtration. Here we investigated whether the AMPK-TRPC6 pathway is involved in insulin-dependent cytoskeleton reorganization and glucose uptake in cultured rat podocytes.

Methods: Western blot and immunofluorescence analysis confirmed AMPKα and TRPC6 expression, the phosphorylation of proteins associated with actin cytoskeleton reorganization (PAK, rac1, and cofilin), and the expression of insulin signaling proteins (Akt, Insulin receptor). Coimmunoprecipitation and immunofluorescence results demonstrated AMPKα/TRPC6 interaction. To ask whether TRPC6 is involved in the insulin regulation of glucose transport, we measured insulin-dependent (1, 2-3H)-deoxy-D-glucose uptake into podocytes after reducing TRPC6 activity pharmacologically and biochemically (TRPC6 siRNA).

Results: The results suggested a key role for the TRPC6 channel in the mediation of insulin-dependent activation of AMPKα2 and glucose uptake. Moreover, AMPK and TRPC6 activation were required to stimulate the Rac1 signaling pathway.

Conclusion: These results suggest a potentially important new mechanism that regulates glucose transport in podocytes and that could be injurious during diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000495236DOI Listing

Publication Analysis

Top Keywords

cytoskeleton reorganization
12
glucose uptake
12
pathway involved
8
involved insulin-dependent
8
insulin-dependent cytoskeleton
8
reorganization glucose
8
uptake cultured
8
cultured rat
8
glomerular filtration
8
transport podocytes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!