Infections with the human cytomegalovirus (HCMV) cause serious medical problems including organ rejection and congenital infection. Treatment of HCMV infections with currently available medication targeting viral enzymes is often accompanied with severe side effects and the occurrence of drug-resistant viruses. This demands novel therapeutical approaches like targeting genetically stable host cell proteins that are crucial for virus replication. Although numerous experimental drugs with promising in vitro efficacy have been identified, the lack of available data in animal models limits their potential for further clinical development. Recently, we described the very strong in vitro antiherpesviral activity of the NF-κB inhibitor TF27 and the CDK7 inhibitor LDC4297 at low nanomolar concentrations. In the present study, we present first data for the in vivo efficacy of both experimental drugs using an established cytomegalovirus animal model (murine CMV replication in immunodefective Rag -/- mice). The main findings of this study are (i) a strong inhibitory potency against beta- and gamma-herpesviruses of both compounds in vitro, (ii) even more important, a pronounced anticytomegaloviral activity also exerted in vivo, that resulted from (iii) a restriction of viral replication to the site of infection, thus preventing organ dissemination, (iv) in the absence of major compound-associated adverse events. Thus, we provide evidence for a strong antiviral potency in vivo and proof-of-concept for both drugs, which may encourage their further drug development, possibly including pharmacologically optimized derivatives, for a potential use in future antiherpesviral treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.antiviral.2018.11.008 | DOI Listing |
Redox Rep
December 2025
Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
Objective: Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.
Methods: Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro.
Purpose: The objective was to use cyclic tensile loading to compare the gap formation at suture site of three different suture materials to repair bovine radial meniscal tears: (1) polyglactin sutures, (2) tough adhesive puncture sealing (TAPS) sutures and (3) ultra-high molecular weight polyethylene (UHMWPE) sutures.
Methods: Twelve ex vivo bovine knees were dissected to retrieve the menisci. Complete radial tears were performed on 24 menisci, which were then separated into three groups and repaired using either pristine 2-0 polyglactin sutures, TAPS sutures (2-0 polyglactin sutures coated with adhesive chitosan/alginate hydrogels) or 2-0 UHMWPE sutures with a single stitch.
Nat Aging
December 2024
Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
The emerging field of senolytics is centered on eliminating senescent cells to block their contribution to the progression of age-related diseases, including cancer, and to facilitate healthy aging. Enhancing the selectivity of senolytic treatments toward senescent cells stands to reduce the adverse effects associated with existing senolytic interventions. Taking advantage of lipofuscin accumulation in senescent cells, we describe here the development of a highly efficient senolytic platform consisting of a lipofuscin-binding domain scaffold, which can be conjugated with a senolytic drug via an ester bond.
View Article and Find Full Text PDFNPJ Regen Med
December 2024
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.
As an emerging type of pluripotent stem cells, chemically induced pluripotent stem cells (CiPSCs) avoid the risks of genomic disintegration by exogenous DNAs from viruses or plasmids, providing a safer stem cell source. To verify CiPSCs' capacity to differentiate into retinal organoids (ROs), we induced CiPSCs from mouse embryonic fibroblasts by defined small-molecule compounds and successfully differentiated the CiPSCs into three-dimensional ROs, in which all major retinal cell types and retinal genes were in concordance with those in vivo. We transplanted retinal photoreceptors from ROs into the subretinal space of retinal degeneration mouse models and the cells could integrate into the host retina, establish synaptic connections, and significantly improve the visual functions of the murine models.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of General Surgery, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. Electronic address:
While the occurrence of GenX, a novel alternative for perfluorooctanoic acid (PFOA), in the environment and its cytotoxicity at high concentrations to thyroid cells are well documented, limited information is available regarding its impact at low concentrations. GenX is detected to be as low as 0.001 ng/mL in drinking water and 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!