Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Early vigour of seedlings is a beneficial trait of field pea (Pisum sativum L.) that contributes to weed control, water use efficiency and is likely to contribute to yield under certain environments. Although breeding is considered the most effective approach to improve early vigour of field pea, the absence of a robust and high-throughput phenotyping tool to dissect this complex trait is currently a major obstacle of genetic improvement programs to address this issue. To develop this tool, separate trials on 44 genetically diverse field pea genotypes were conducted in the automated plant phenotyping platform of Plant Phenomics Victoria, Horsham and in the field, respectively. High correlation between estimated plant parameters derived from the automated phenotyping platform and important early vigour traits such as shoot biomass, leaf area and plant height indicated that the derived plant parameters can be used to predict vigour traits in field pea seedlings. Plant growth analysis demonstrated that the "broken-stick" model fitted well with the growth pattern of all field pea genotypes and can be used to determine the linear growth phase. Further analysis suggested that the estimated plant parameters collected at the linear growth phase can effectively differentiate early vigour across field pea genotypes. High correlation between normalised difference vegetation indices captured from the field trial and estimated shoot biomass and top-view area confirmed the consistent performance of early vigour field pea genotypes under controlled and field environments. Overall, our results demonstrated that this robust screening tool is highly applicable and will enable breeding programs to rapidly identify early vigour traits and utilise germplasm to contribute to the genetic improvement of field peas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242686 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207788 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!