ZnO nanoparticles (NPs) of 4-5 nm, widely adopted as an electron transport layer (ETL) in quantum dot light emitting diodes (QD-LEDs), were synthesized using the solution-precipitation process. It is notable that synthesized ZnO NPs are highly degenerate intrinsic semiconductors and their donor concentration can be increased up to N = 6.9 × 10 cm by annealing at 140 °C in air. An optical bandgap increase of as large as 0.16-0.33 eV by degeneracy is explained well by the Burstein-Moss shift. In order to investigate the influence of intrinsic defects of ZnO NP ETLs on the performance of QD-LED devices without a combined annealing temperature between ZnO NP ETLs and the emissive QD layer, pre-annealed ZnO NPs at 60 °C, 90 °C, 140 °C, and 180 °C were spin-coated on the annealed QD layer without further post-annealing. As the annealing temperature increases from 60 °C to 180 °C, the defect density related to oxygen vacancy (V ) in ZnO NPs is reduced from 34.4% to 17.8%, whereas the defect density of interstitial Zn (Zn) is increased. Increased Zn reduces the width (W) of the depletion region from 0.21 to 0.12 nm and lowers the Schottky barrier (Ф) between ZnO NPs and the Al electrode from 1.19 to 0.98 eV. We reveal for the first time that carrier conduction between ZnO NP ETLs and the Al electrode is largely affected by the concentration of Zn above the conduction band minimum, and effectively described by space charge limited current and trap charge limited current models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/aaed98 | DOI Listing |
Plants (Basel)
January 2025
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka Street 116 B, 30-149 Krakow, Poland.
One of the methods for obtaining zinc oxide nanoparticles (ZnO NPs) is electrochemical synthesis. In this study, the anodic dissolution process of metallic zinc in alcohol solutions of LiCl was used to synthesize ZnO NPs. The products were obtained as colloidal suspensions in an electrolyte solution.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy.
This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
January 2025
Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia. Electronic address:
Zinc oxide nanoparticles (ZnO-NPs) are of interest in biomedical applications, environmental remediation, and agriculture. ZnO-NPs inhibit the growth of phytopathogenic fungi and bacteria. We have evaluated their effects on mitochondrial function and the induction of membrane damage, apoptosis, and DNA damage in human peripheral blood mononuclear cells (PBMC) in vitro.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!