Content-based retrieval still remains one of the main problems with respect to controversies and challenges in digital healthcare over big data. To properly address this problem, there is a need for efficient computational techniques, especially in scenarios involving queries across multiple data repositories. In such scenarios, the common computational approach searches the repositories separately and combines the results into one final response, which slows down the process altogether. In order to improve the performance of queries in that kind of scenario, we present the Domain Index, a new category of index structures intended to efficiently query a data domain across multiple repositories, regardless of the repository to which the data belong. To evaluate our method, we carried out experiments involving content-based queries, namely range and k nearest neighbor (kNN) queries, 1) over real-world data from a public data set of mammograms, as well as 2) over synthetic data to perform scalability evaluations. The results show that images from any repository are seamlessly retrieved, sustaining performance gains of up to 53% in range queries and up to 81% in kNN queries. Regarding scalability, our proposal scaled well as we increased 1) the cardinality of data (up to 59% of gain) and 2) the number of queried repositories (up to 71% of gain). Hence, our method enables significant performance improvements, and should be of most importance for medical data repository maintainers and for physicians' IT support.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2018.2881381DOI Listing

Publication Analysis

Top Keywords

data
10
efficiently query
8
medical data
8
multiple repositories
8
knn queries
8
queries
6
repositories
5
employing domain
4
domain indexes
4
indexes efficiently
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!