A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Noise-Assisted Multivariate EMD-Based Mean-Phase Coherence Analysis to Evaluate Phase-Synchrony Dynamics in Epilepsy Patients. | LitMetric

Spatiotemporal evolution of synchrony dynamics among neuronal populations plays an important role in decoding complicated brain function in normal cognitive processing as well as during pathological conditions such as epileptic seizures. In this paper, a non-linear analytical methodology is proposed to quantitatively evaluate the phase-synchrony dynamics in epilepsy patients. A set of finite neuronal oscillators was adaptively extracted from a multi-channel electrocorticographic (ECoG) dataset utilizing noise-assisted multivariate empirical mode de-composition (NA-MEMD). Next, the instantaneous phases of the oscillatory functions were extracted using the Hilbert transform in order to be utilized in the mean-phase coherence analysis. The phase-synchrony dynamics were then assessed using eigenvalue decomposition. The extracted neuronal oscillators were grouped with respect to their frequency range into wideband (1-600 Hz), ripple (80-250 Hz), and fast-ripple (250-600 Hz) bands in order to investigate the dynamics of ECoG activity in these frequency ranges as seizures evolve. Drug-refractory patients with frontal and temporal lobe epilepsy demonstrated a reduction in phase-synchrony around seizure onset. However, the network phase-synchrony started to increase toward seizure end and achieved its maximum level at seizure offset for both types of epilepsy. This result suggests that hyper-synchronization of the epileptic network may be an essential self-regulatory mechanism by which the brain terminates seizures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326379PMC
http://dx.doi.org/10.1109/TNSRE.2018.2881606DOI Listing

Publication Analysis

Top Keywords

phase-synchrony dynamics
12
noise-assisted multivariate
8
mean-phase coherence
8
coherence analysis
8
evaluate phase-synchrony
8
dynamics epilepsy
8
epilepsy patients
8
neuronal oscillators
8
phase-synchrony
5
dynamics
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!