Thirteen new grayanane diterpenoid glucosides, 3- epi-grayanoside B (1), micranthanosides A-E (2-6), 7α-hydroxygrayanoside C (7), micranthanoside F (8), 14β-acetyoxymicranthanoside F (9), micranthanoside G (10), 14- O-acetylmicranthanoside G (11), 14β-hydroxypieroside A (12), and micranthanoside H (13), and six known analogues (14-19) were isolated from the leaves of Rhododendron micranthum. The structures of 1-19 were elucidated based on spectroscopic analysis, comparison with literature, and chemical methods. The absolute configurations of 3- epi-grayanoside B (1) and micranthanosides A (2) and C (4) were defined by single-crystal X-ray diffraction analysis. This is the first report of the crystal structures of grayanane diterpenoid glucosides. 3- epi-Grayanoside B (1) represents the first example of a 3α-oxygrayanane diterpenoid glucoside, and micranthanosides A-D (2-5) are the first examples of 5α-hydroxy-1-β H-grayanane diterpenoids. In addition, micranthanosides C-F (4-6 and 8) and 14β-acetyoxymicranthanoside F (9) represent the first examples of grayanane glucosides with the glucosylation at C-16. All the grayanane diterpenoid glucosides 1-19 were assayed for their anti-inflammatory, antitumor, and PTP1B inhibitory activities, but did not show significant activities at 40 μM. Grayanane diterpenoid glucosides 1-18 were evaluated for their antinociceptive activity, and compounds 2, 3, 7-10, 12, 13, and 16 showed significant antinociceptive effects with percentage inhibitions in excess of 50%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jnatprod.8b00490 | DOI Listing |
Acc Chem Res
December 2024
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China.
Front Pharmacol
October 2024
Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, China.
J Asian Nat Prod Res
September 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
Investigation of the fruits of G. Don led to the isolation of three new grayanane-type diterpenoids, rhodomolleins LIV-LVI (). The structures and absolute configurations of new compounds were fully elucidated by spectroscopic analysis and single-crystal X-ray diffraction, including HRESIMS, 1 D and 2 D NMR data.
View Article and Find Full Text PDFMolecules
April 2024
College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA.
Diterpenes represent one of the most diverse and structurally complex families of natural products. Among the myriad of diterpenoids, grayanane diterpenes are particularly notable. These terpenes are characterized by their unique 5/7/6/5 tetracyclic system and are exclusive to the Ericaceae family of plants.
View Article and Find Full Text PDFFitoterapia
January 2024
Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, People's Republic of China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China. Electronic address:
Thirteen diterpenoids (1-13), classified into four structurally diverse carbon skeletons, including 1,5-seco-kalmane (1 and 6), grayanane (2-11), kalmane (12), and rhodomollane (13), were isolated from the flowers extract of Rhododendron molle. Among them, rhodomollinols A - E (1-5) were five new diterpenoids and their structures were elucidated by extensive spectroscopic methods including HRESIMS, UV, IR, 1D and 2D NMR, as well as quantum ECD calculations. Rhodomollinol A (1) is the first representative of a 6-deoxy-1,5-seco-kalmane diterpenoid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!