RNA Recognition-like Motifs Activate a Mitogen-Activated Protein Kinase.

Biochemistry

Department of Biochemistry and Molecular Biology , Thomas Jefferson University, Philadelphia , Pennsylvania 19107 , United States.

Published: December 2018

Smk1 is a mitogen-activated protein kinase (MAPK) family member in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore formation. Ssp2 is a meiosis-specific protein that activates Smk1 and triggers the autophosphorylation of its activation loop. A fragment of Ssp2 that is sufficient to activate Smk1 contains two segments that resemble RNA recognition motifs (RRMs). Mutations in either of these motifs eliminated Ssp2's ability to activate Smk1. In contrast, deletions and insertions within the segment linking the RRM-like motifs only partially reduced the activity of Ssp2. Moreover, when the two RRM-like motifs were expressed as separate proteins in bacteria, they activated Smk1. We also find that both motifs can be cross-linked to Smk1 and that at least one of the motifs binds near the ATP-binding pocket of the MAPK. These findings demonstrate that motifs related to RRMs can directly activate protein kinases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457901PMC
http://dx.doi.org/10.1021/acs.biochem.8b01032DOI Listing

Publication Analysis

Top Keywords

motifs
8
mitogen-activated protein
8
protein kinase
8
activate smk1
8
motifs rrms
8
rrm-like motifs
8
smk1
6
rna recognition-like
4
recognition-like motifs
4
activate
4

Similar Publications

Background: Sponges harbor microbial communities that play crucial roles in host health and ecology. However, the genetic adaptations that enable these symbiotic microorganisms to thrive within the sponge environment are still being elucidated. To understand these genetic adaptations, we conducted a comparative genomics analysis on 350 genomes of Actinobacteriota, a phylum commonly associated with sponges.

View Article and Find Full Text PDF

The proliferation-specific oncogenic transcription factor, FOXM1 is overexpressed in primary and recurrent breast tumors across all breast cancer (BC) subtypes. Intriguingly, FOXM1 overexpression was found to be highest in Triple-negative breast cancer (TNBC), the most aggressive BC with the worst prognosis. However, FOXM1-mediated TNBC pathogenesis is not completely elucidated.

View Article and Find Full Text PDF

Alternative splicing in the DBD linker region of p63 modulates binding to DNA and iASPP in vitro.

Cell Death Dis

January 2025

Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.

The transcription factor p63 is expressed in many different isoforms as a result of differential promoter use and splicing. Some of these isoforms have very specific physiological functions in the development and maintenance of epithelial tissues and surveillance of genetic integrity in oocytes. The ASPP family of proteins is involved in modulating the transcriptional activity of the p53 protein family members, including p63.

View Article and Find Full Text PDF

Androgens induce renal synthesis of urinary lipocalin-family protein, a potential inter-sexual transmitter in viviparous rockfish.

Biochim Biophys Acta Gen Subj

January 2025

Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan. Electronic address:

In viviparous black rockfish (Sebastes schlegelii), the kidney of reproductive-phase males actively produces lipocalin-type prostaglandin D synthase homolog (LPGDSh) protein, which is presumably involved in intersexual communication when emitted in the urine. The present study was undertaken to discover whether androgens and their nuclear receptors (Ars) are engaged in regulation of renal LPGDSh protein synthesis in black rockfish. Quantitative real-time polymerase chain reaction, in conjunction with immunohistochemistry and highly sensitive enzyme-linked immunosorbent assay, revealed that intra-abdominal administration of a synthetic androgen, 17α-methyltestosterone (MT), to juvenile black rockfish induced their renal expression of LPGDSh transcript and protein.

View Article and Find Full Text PDF

Structural and Functional Insights into UDP-N-acetylglucosamine-enolpyruvate Reductase (MurB) from Brucella ovis.

Arch Biochem Biophys

January 2025

Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza, and GBsC (Unizar) join unit to CSIC, Zaragoza, Spain. Electronic address:

The peptidoglycan biosynthetic pathway involves a series of enzymatic reactions in which UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) plays a crucial role in catalyzing the conversion of UDP-N-acetylglucosamine-enolpyruvate (UNAGEP) to UDP-N-acetylmuramic acid. This reaction relies on NADPH and FAD and, since MurB is not found in eukaryotes, it is an attractive target for the development of antimicrobials. MurB from Brucella ovis, the causative agent of brucellosis in sheep, is characterized here.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!