Macrotextured superhydrophobic surfaces can reduce droplet-substrate contact times of impacting water droplets; however, surface designs with similar performance for significantly more viscous liquids are missing, despite their importance in nature and technology such as for chemical shielding, food-staining repellency, and supercooled (viscous) water droplet removal in anti-icing applications. Here, we introduce a deterministic, controllable, and upscalable method to fabricate superhydrophobic surfaces with a 3D-printed architecture, combining arrays of alternating surface protrusions and indentations. We show a more than threefold contact time reduction of impacting viscous droplets up to a fluid viscosity of 3.7 mPa·s, which equals 3.7 times the viscosity of water at room temperature, covering the viscosity of many chemicals and supercooled water. On the basis of the combined consideration of the fluid flow within and the simultaneous droplet dynamics above the texture, we recommend future pathways to rationally architecture such surfaces, all realizable with the methodology presented here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b16893 | DOI Listing |
ACS Nano
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.
View Article and Find Full Text PDFSmall Methods
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China.
The insufficient density and discontinuity of solar energy of photothermal superhydrophobic flexible film seriously affect the practical application. Light energy harvesting and heat energy storage are effective ways to solve this problem. Inspired by the viscous temperature-regulating material within the inflorescence of Lobelia telekii and the arrangement of bracts on its surface, a flexible film for photoheat storage is proposed that integrated a three-order photoheat trap and one-order heat storage.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, SI-1000 Ljubljana, Slovenia.
The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil-water separation applications.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Engineering, University of Liverpool, Liverpool, L69 3GH, United Kingdom.
Hypothesis: We hypothesise that superhydrophobic surfaces can achieve effective interfacial slip and drag reduction even under non-Newtonian, shear-thinning fluid flows. Unlike Newtonian fluids, where slip is primarily influenced by viscosity and surface tension, we anticipate that the shear-thinning nature of these fluids may enhance slip length and drag reduction.
Experiments And Numerical Analysis: The superhydrophobic surfaces used in this study, featuring a dual-scale random topography, were fabricated via a spray coating process, and low-concentration xanthan gum solutions (50-250 ppm) were used as model shear-thinning fluids of low elasticity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!