The development of robust, versatile and accurate toolsets is critical to facilitate therapeutic genome editing applications. Here we establish RNA-programmable Cas9-Cas9 chimeras, in single- and dual-nuclease formats, as versatile genome engineering systems. In both of these formats, Cas9-Cas9 fusions display an expanded targeting repertoire and achieve highly specific genome editing. Dual-nuclease Cas9-Cas9 chimeras have distinct advantages over monomeric Cas9s including higher target site activity and the generation of predictable precise deletion products between their target sites. At a therapeutically relevant site within the BCL11A erythroid enhancer, Cas9-Cas9 nucleases produced precise deletions that comprised up to 97% of all sequence alterations. Thus Cas9-Cas9 chimeras represent an important tool that could be particularly valuable for therapeutic genome editing applications where a precise cleavage position and defined sequence end products are desirable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242970PMC
http://dx.doi.org/10.1038/s41467-018-07310-xDOI Listing

Publication Analysis

Top Keywords

cas9-cas9 chimeras
16
genome editing
16
therapeutic genome
8
editing applications
8
genome
5
cas9-cas9
5
orthogonal cas9-cas9
4
chimeras
4
chimeras provide
4
provide versatile
4

Similar Publications

Development of simple and readily adoptable methods to mediate germline engineering of the chicken genome will have many applications in research, agriculture and industrial biotechnology. We report germline targeting of the endogenous chicken Interferon Alpha and Beta Receptor Subunit 1 (IFNAR1) gene by transgenic expression of the high-fidelity Cas9 (Cas9-HF1) and guide RNAs (gRNAs) in chickens. First, we developed a Tol2 transposon vector carrying Cas9-HF1, IFNAR1-gRNAs (IF-gRNAs) and green fluorescent protein (GFP) transgenes (pTgRCG) and validated in chicken fibroblast DF1 cells.

View Article and Find Full Text PDF

The original version of this Article contained errors in the author affiliations. Mehmet Fatih Bolukbasi was incorrectly associated with Bluebird Bio., Cambridge, MA, USA and Ankit Gupta was incorrectly associated with Exonics Therapeutics, Watertown, MA, USA.

View Article and Find Full Text PDF

The development of robust, versatile and accurate toolsets is critical to facilitate therapeutic genome editing applications. Here we establish RNA-programmable Cas9-Cas9 chimeras, in single- and dual-nuclease formats, as versatile genome engineering systems. In both of these formats, Cas9-Cas9 fusions display an expanded targeting repertoire and achieve highly specific genome editing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!