The development of robust, versatile and accurate toolsets is critical to facilitate therapeutic genome editing applications. Here we establish RNA-programmable Cas9-Cas9 chimeras, in single- and dual-nuclease formats, as versatile genome engineering systems. In both of these formats, Cas9-Cas9 fusions display an expanded targeting repertoire and achieve highly specific genome editing. Dual-nuclease Cas9-Cas9 chimeras have distinct advantages over monomeric Cas9s including higher target site activity and the generation of predictable precise deletion products between their target sites. At a therapeutically relevant site within the BCL11A erythroid enhancer, Cas9-Cas9 nucleases produced precise deletions that comprised up to 97% of all sequence alterations. Thus Cas9-Cas9 chimeras represent an important tool that could be particularly valuable for therapeutic genome editing applications where a precise cleavage position and defined sequence end products are desirable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242970 | PMC |
http://dx.doi.org/10.1038/s41467-018-07310-x | DOI Listing |
Anim Biotechnol
November 2023
Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia.
Development of simple and readily adoptable methods to mediate germline engineering of the chicken genome will have many applications in research, agriculture and industrial biotechnology. We report germline targeting of the endogenous chicken Interferon Alpha and Beta Receptor Subunit 1 (IFNAR1) gene by transgenic expression of the high-fidelity Cas9 (Cas9-HF1) and guide RNAs (gRNAs) in chickens. First, we developed a Tol2 transposon vector carrying Cas9-HF1, IFNAR1-gRNAs (IF-gRNAs) and green fluorescent protein (GFP) transgenes (pTgRCG) and validated in chicken fibroblast DF1 cells.
View Article and Find Full Text PDFNat Commun
December 2018
Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
The original version of this Article contained errors in the author affiliations. Mehmet Fatih Bolukbasi was incorrectly associated with Bluebird Bio., Cambridge, MA, USA and Ankit Gupta was incorrectly associated with Exonics Therapeutics, Watertown, MA, USA.
View Article and Find Full Text PDFNat Commun
November 2018
Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
The development of robust, versatile and accurate toolsets is critical to facilitate therapeutic genome editing applications. Here we establish RNA-programmable Cas9-Cas9 chimeras, in single- and dual-nuclease formats, as versatile genome engineering systems. In both of these formats, Cas9-Cas9 fusions display an expanded targeting repertoire and achieve highly specific genome editing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!