Chemotherapy failure is the major cause of recurrence and poor prognosis in colorectal cancer (CRC) patients. The role of the differentially expressed lncRNAs in 5-Fluorouracil chemoresistance has not fully explained. Here, we observed lncRNA H19 was associated with the 5-Fu resistance in CRC. Quantitative analysis indicated that H19 was significantly increased in recurrent CRC patient samples. Kaplan-Meier survival analysis indicated that high H19 expression in CRC tissues was significantly associated with poor recurrent free survival. Our functional studies demonstrated that H19 promoted colorectal cells 5-Fu resistance. Mechanistically, H19 triggered autophagy via SIRT1 to induce cancer chemoresistance. Furthermore, bioinformatics analysis showed that miR-194-5p could directly bind to H19, suggesting H19 might work as a ceRNA to sponge miR-194-5p, which was confirmed by Dual-luciferase reporter assay and Immunoprecipitation assay. Extensively, our study also showed that SIRT1 is the novel direct target of miR-194-5p in CRC cells. Taken together, our study suggests that H19 mediates 5-Fu resistance in CRC via SIRT1 mediated autophagy. Our finding provides a novel mechanistic role of H19 in CRC chemoresistance, suggesting that H19 may function as a marker for prediction of chemotherapeutic response to 5-Fu.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242979PMC
http://dx.doi.org/10.1038/s41419-018-1187-4DOI Listing

Publication Analysis

Top Keywords

5-fu resistance
16
h19
11
colorectal cancer
8
resistance crc
8
analysis indicated
8
suggesting h19
8
crc
7
5-fu
5
long non-coding
4
non-coding rna
4

Similar Publications

Chemotherapy resistance is a great challenge in the treatment of gastric cancer (GC), so it is urgent to explore the prognostic markers of chemoresistance. PUF60 (Poly (U)-binding splicing factor 60) is a nucleic acid-binding protein that has been shown to regulate transcription and link to tumorigenesis in various cancers. However, its biological role and function in chemotherapy resistance of GC is unclear.

View Article and Find Full Text PDF

FOXC1-mediated serine metabolism reprogramming enhances colorectal cancer growth and 5-FU resistance under serine restriction.

Cell Commun Signal

January 2025

Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.

Colorectal cancer (CRC) is the most common gastrointestinal malignancy, and 5-Fluorouracil (5-FU) is the principal chemotherapeutic drug used for its treatment. However, 5-FU resistance remains a significant challenge. Under stress conditions, tumor metabolic reprogramming influences 5-FU resistance.

View Article and Find Full Text PDF

Attenuates 5-Fluorouracil-Induced Intestinal Mucositis in Mice.

Pharmaceuticals (Basel)

December 2024

Laboratory of Gastrointestinal Physio-Pharmacology (LEFFAG), Federal University of Ceará, Coronel Nunes de Melo Street, 1315 Rodolfo Teófilo, Fortaleza 60416-030, CE, Brazil.

5-Fluorouracil (5-FU) is an antimetabolite widely prescribed in cancer treatments, but its use in highly proliferative tissues can cause significant problems such as mucositis. is a probiotic commonly used for protection against acute diarrhea, gastrointestinal dysbiosis and inflammatory bowel diseases. We investigated the effect of on 5-FU intestinal mucositis in mice.

View Article and Find Full Text PDF

Cutaneous melanoma (CM) represents a severe skin cancer with a rising incidence at present and limited treatment options. 5-Fluorouracil (5-FU) is widely used, including for CM; however, the innate resistance of this cancer to conventional therapy remains problematic. Quercetin (QUE) is a flavonoid that can sensitize cancer cells to antitumor agents such as 5-FU.

View Article and Find Full Text PDF

Peritoneal metastasis (PM) remains a major challenge in patients with gastric cancer (GC) and occurs preferentially in adipose-rich organs, such as the omentum. Adipose-derived stem cells (ASCs) may influence cancer behavior. This study aimed to investigate whether ASCs isolated from the omentum can act as progenitors of cancer-associated fibroblasts (CAFs) and analyze their effects on the cancer stem cell (CSC) niche and the treatment resistance of GC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!