A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improved adaptive randomization strategies for a seamless Phase I/II dose-finding design. | LitMetric

In this article, we propose and evaluate three alternative randomization strategies to the adaptive randomization (AR) stage used in a seamless Phase I/II dose-finding design. The original design was proposed by Wages and Tait in 2015 for trials of molecularly targeted agents in cancer treatments, where dose-efficacy assumptions are not always monotonically increasing. Our goal is to improve the design's overall performance regarding the estimation of optimal dose as well as patient allocation to effective treatments. The proposed methods calculate randomization probabilities based on the likelihood of every candidate model as opposed to the original design which selects the best model and then randomizes doses based on estimations from the selected model. Unlike the original method, our proposed adaption does not require an arbitrarily specified sample size for the adaptive randomization stage. Simulations are used to compare the proposed strategies and a final strategy is recommended. Under most scenarios, our recommended method allocates more patients to the optimal dose while improving accuracy in selecting the final optimal dose without increasing the overall risk of toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10543406.2018.1535496DOI Listing

Publication Analysis

Top Keywords

adaptive randomization
12
optimal dose
12
randomization strategies
8
seamless phase
8
phase i/ii
8
i/ii dose-finding
8
dose-finding design
8
randomization stage
8
original design
8
randomization
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!